【题目】如图,在中,是角平分线,,
(1)求的度数.
(2)过点作边上的高, 垂足为;求的度数.
【答案】(1)∠BAD=35°;(2)∠EAD=15°.
【解析】
(1)根据三角形内角和定理求出∠BAC的度数,根据角平分线得定义即可求出∠BAD的度数;
(2)由直角三角形两锐角互余的关系可求出∠CAE的度数,根据角平分线的定义可求出∠CAD的度数,根据角的和差关系即可求出∠EAD的度数.
(1)∵∠B=40°,∠C=70°,∠BAC+∠B+∠C=180°,
∴∠BAC=180°-∠B-∠C=70°,
∵是角平分线,
∴∠BAD=∠CAD=∠BAC=35°.
(2)∵AE为BC边上的高,
∴∠AEC=90°,
∵∠C=70°,
∴∠CAE=90°-∠C=20°,
∵∠CAD=35°,
∴∠EAD=∠CAD-∠CAE=15°.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.
求证:(1)AM⊥DM;
(2)M为BC的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.
(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车在直线形的公路上由A向B行驶,M、N分别是位于公路AB两侧的两个学校,如图.
(1)汽车行驶时,会对公路两旁的学校都造成一定的影响,当汽车行驶到何处时,分别对两个学校影响最大?在图中标出来;
(2)当汽车从A向B行驶时,在哪一段上对两个学校影响越来越大?越来越小?对M学校影响逐渐减小而对N学校影响逐渐增大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三角形ABC的三条内角平分线为AE、BF、CG,下面的说法中正确的个数有( )
①△ABC的内角平分线上的点到三边距离相等
②三角形的三条内角平分线交于一点
③三角形的内角平分线位于三角形的内部
④三角形的任一内角平分线将三角形分成面积相等的两部分.
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com