精英家教网 > 初中数学 > 题目详情
2.在长方形ABCD中,点E是AD的中点,将△ABE沿BE折叠后得到对应的△GBE,将BG延长交直线DC于点F.
(1)如果点G在长方形ABCD的内部,如图①所示.
Ⅰ)求证:GF=DF;
Ⅱ)若DF=$\frac{1}{2}$DC,AD=4,求AB的长度.
(2)如果点G在长方形ABCD的外部,如图②所示,DF=kDC(k>1).请用含k的代数式表示$\frac{AD}{AB}$的值

分析 (1)、Ⅰ)、求简单的线段相等,可证线段所在的三角形全等,即连接EF,证△EGF≌△EDF即可;
Ⅱ)、可设DF=x,BC=y;进而可用x表示出DC、AB的长,根据折叠的性质知AB=BG,即可得到BG的表达式,由(1)证得GF=DF,那么GF=x,由此可求出BF的表达式,进而可在Rt△BFC中,根据勾股定理求出x、y的比例关系,即可得到$\frac{AD}{AB}$的值,代值即可得出结论;
(2)方法同(2).

解答 解:(1)、
Ⅰ)、连接EF,
根据翻折的性质得,∠EGF=∠D=90°,
EG=AE=ED,EF=EF,
在Rt△EGF和Rt△EDF中,$\left\{\begin{array}{l}{EG=ED}\\{EF=EF}\end{array}\right.$,
∴Rt△EGF≌Rt△EDF(HL),
∴GF=DF;

Ⅱ)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y
∵DC=2DF,
∴CF=x,DC=AB=BG=2x,
∴BF=BG+GF=3x;
在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2
∴y=2$\sqrt{2}$x,
∴$\frac{AD}{AB}=\frac{y}{2x}$=$\sqrt{2}$;
∵AD=4,
∴AB=2$\sqrt{2}$
(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y
∵DC=k•DF,
∴BF=BG+GF=(k+1)x
在Rt△BCF中,BC2+CF2=BF2
即y2+[(k-1)x]2=[(k+1)x]2
∴y=2x$\sqrt{k}$,
∴$\frac{AD}{AB}=\frac{y}{kx}$=$\frac{2\sqrt{k}}{k}$.

点评 此题是折叠问题,主要考查了矩形的性质、图形的折叠变换、全等三角形的判定和性质、勾股定理的应用等重要知识,难度适中.用勾股定理表示出y是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.若3x=15,3y=5,则3x-y等于(  )
A.3B.5C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图所示,∠B=∠D=90°,BC=CD,∠1=30°,则∠2=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:如图1,点A在半圆O上运动(不与半圆的两个端点重合),以AC为对角线作矩形ABCD,使点D落在直径CE上,CE=8.将△ADC沿AC折叠,得到△AD'C.

(1)求证:AD'是半圆O的切线;
(2)如图2,当AB与CD'的交点F恰好在半圆O上时,连接OA.
①求证:四边形AOCF是菱形;
②求四边形AOCF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.阅读下列材料,解决后面两个问题:
我们可以将任意三位数$\overline{abc}$(其中a、b、c分别表示百位上的数字,十位上的数字和个位上的数字,且a≠0),显然$\overline{abc}$=100a+10b+c;我们形如$\overline{xyz}$和$\overline{zyx}$的两个三位数称为一对“姊妹数”(其中x、y、z是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.
(1)写出任意两对“姊妹数”,并判断2331是否是一对“姊妹数”的和;
(2)如果用x表示百位数字,求证:任意一对“姊妹数”的和能被37整除.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.
(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角;
(2)如图3,C是函数y=$\frac{3}{x}$(x>0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,则EC的长为6 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.根据所给材料完成第(2)、第(3)两小题.
(1)基础知识:如图a,正方形ABCD的一个顶点B在直线EF上,且AE⊥EF,CF⊥EF,显然,我们可以证明△ABE≌△BCF.
(2)实践运用:如图b,锐角△ABC的顶点C是直线l上方的一个动点,运动过程中始终保持∠ACB=45°,A、B点在直线l上,现分别以A、B为直角顶点,向△ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分别过点E、F作直线l的垂线,垂足为M、N.请问在C点的运动过程中,线段EM+FN的值是否改变,说明你的理由.
(3)变化拓展:当图b中的AB=1,其他条件不变时,随着C点的变化,△ABC的面积也随之变化.请直接写出△ABC面积的最大值为$\frac{\sqrt{2}+1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在等腰三角形ABC中,两腰上的中线BE、CD相交于点O.求证:OB=OC.

查看答案和解析>>

同步练习册答案