精英家教网 > 初中数学 > 题目详情
如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连接AO,如果AB=3,AO=2
2
,那么AC的长等于(  )
分析:在AC上截取CF=AB,根据正方形的对角线互相垂直平分且相等求出OB=OC,∠BOC=90°,根据等角的余角相等求出∠OBA=∠OCF,然后利用“边角边”证明△ABO和△FCO全等,根据全等三角形的对应边相等可得OF=AO,全等三角形对应角相等可得∠AOB=∠FOC,然后求出∠AOF=∠BOC=90°,判定出△AOF是等腰直角三角形,根据等腰直角三角形的斜边等于直角边的
2
倍求出AF,再根据AC=AF+CF,代入数据进行计算即可得解.
解答:解:如图,在AC上截取CF=AB,
∵四边形BCDE是正方形,
∴OB=OC,∠BOC=90°,
∴∠2+∠OCF=90°,
∵∠BAC=90°,
∴∠1+∠OBA=90°,
∵∠1=∠2(对顶角相等),
∴∠OBA=∠OCF,.
∵在△ABO和△FCO中,
OB=OC
∠OBA=∠OCF
CF=AB

∴△ABO≌△FCO(ASA),
∴OF=AO=2
2
,∠AOB=∠FOC,
∴∠AOF=∠AOB+∠BOF=∠FOC+∠BOF=∠BOC=90°,
∴△AOF是等腰直角三角形,
∴AF=
2
AO=
2
×2
2
=4,
∴AC=AF+CF=4+3=7.
故选B.
点评:本题考查了正方形的对角线互相垂直平分且相等的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,作辅助线构造出全等三角形与等腰直角三角形是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接ED、BD.
(1)求证:△ABC∽△BCD
(2)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC各边为直径的三个半圆围成两个新月形(阴影部分),已知AC=3cm,BC=4cm.则新月形(阴影部分)的面积和是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,以Rt△ABC的斜边AB为直径作⊙0,D是BC上的点,且有弧AC=弧CD,连CD、BD,在BD延长线上取一点E,使∠DCE=∠CBD.
(1)求证:CE是⊙0的切线;
(2)若CD=2
5
,DE和CE的长度的比为
1
2
,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的直角边AC为直径作圆O交斜边AB于点D,若劣弧CD=120°,则
BDAD
=
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•黔南州)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆0是否相切?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-16x+60=0的两个根,求直角边BC的长.

查看答案和解析>>

同步练习册答案