精英家教网 > 初中数学 > 题目详情
14.如图,在△ABC中,已知AD是∠BAC的平分线,DE∥AB,交AC于点E,AB=15,AC=10,则CE=4.

分析 先根据角平分线定义和平行线性质得出:∠EDA=∠CAD,则ED=AE,设AE=x,根据平行线分线段成比例定理列比例式得方程,求出x的值,并计算出CE的长.

解答 解:∵AD是∠BAC的平分线,
∴∠CAD=∠BAD,
∵DE∥AB,
∴∠EDA=∠BAD,
∴∠EDA=∠CAD,
∴ED=AE,
设AE=x,则ED=x,CE=10-x,
∵ED∥AB,
∴$\frac{ED}{AB}=\frac{CE}{AC}$,
∴$\frac{x}{15}=\frac{10-x}{10}$,
∴x=6,
∴CE=10-6=4,
故答案为:4.

点评 本题考查了平行线、角平分线的性质和等腰三角形的性质和判定,在几何角的推理中常运用等边对等角和等角对等边,属于常考题型;同时与方程相结合,求出未知数的值,即线段的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.
(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y元,x个月全部付清,则y与x的关系式为y=$\frac{8000}{x}$,是反比例函数.
(2)某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式y=$\frac{1000}{x}$,是反比例函数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知等腰三角形(不是等边三角形)的三边长均满足方程2x2-8x+6=0,则这个等腰三角形的周长为5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若x满足方程$\sqrt{3}$x-$\sqrt{3}$=2+2x,则x=-7-4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在△ABC中,∠C=90°,若a:b=3:4,且c=30,则b=24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于D,O为AD上一点,以O为圆心,OA为半径的圆交AB于G,交BC于E、F.且AG=AD.
(1)求EF的长;
(2)求tan∠BDG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.1.2342+0.7662+2.468×0.766=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC的中点,连接EF.
(1)试判断EF与⊙O的关系,并说明理由.
(2)若DC=2,EF=$\sqrt{3}$,点P是⊙O上除点E、C外的任意一点,则∠EPC的度数为60°或120°(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.问题1:
填表:计算代数式的值.
 a-$\frac{5}{2}$-2-1 0 1 2
 a2-2a+1 12.259310 1
问题2:
你可以再换几个数再试试(不需要写出来),先观察表格再归纳,你发现a2-2a+1的值有什么规律?把它写出来,并说明理由.

查看答案和解析>>

同步练习册答案