分析 根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC的长度,然后根据锐角的正切等于对边比邻边解答.
解答 解:∵CD是斜边AB上的中线,CD=2,
∴AB=2CD=4,
根据勾股定理,BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{7}$,
tanB=$\frac{AC}{BC}$=$\frac{3}{\sqrt{7}}$=$\frac{3\sqrt{7}}{7}$.
故答案为:$\frac{{3\sqrt{7}}}{7}$.
点评 本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 56 | B. | 68 | C. | 70 | D. | 72 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com