精英家教网 > 初中数学 > 题目详情

【题目】如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是_____

【答案】3号或5

【解析】

若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号;若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号;据此可得.

若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或5号或7号,
若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号,
故答案是:3号或5号.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在单位为1的网格中,有ABC,且的三个顶点都在格点上:

1)以点C为原点建立直角坐标系,并确定A点的坐标;

2)将ABC向下平移5个单位,得到A1B1C1(不写作法);

3)以点C为旋转中心,将ABC顺时针旋转90°得到A2B2C2(不写作法);

4)求弧BB2的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A03)、B34)、C22)(正方形网格中每个小正方形的边长是一个单位长度).

1ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是

2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为21,点C2的坐标是 ;(画出图形)

3A2B2C2的面积是 平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.

(1)求抛物线的解析式和顶点C的坐标;

(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;

(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一座古拱桥的截面图拱桥桥洞的上沿是抛物线形状当水面的宽度为10m桥洞与水面

的最大距离是5m

1经过讨论同学们得出三种建立平面直角坐标系的方案如下图

你选择的方案是_____填方案一方案二或方案三),B点坐标是______求出你所选方案中的抛物线的表达式

2因为上游水库泄洪水面宽度变为6m求水面上涨的高度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD相交于点OOEOF

1)求证:△BOE≌△DOF

2)若BDEF,连接DEBF,判断四边形EBFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】河上有一座桥孔为抛物线形的拱桥(如图 ),水面宽 时,水面离桥孔顶部 ,因降暴雨水面上升

(1)建立适当的坐标系,并求暴雨后水面的宽;(结果保留根号)

(2)一艘装满物资的小船,露出水面的部分高为 ,宽 (横断面如图 所示),暴雨后这艘船能从这座拱桥下通过吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y1ax+b的图象与反比例函数y2的图象交于点A(12)B(2m)

(1)求一次函数和反比例函数的表达式;

(2)请直接写出y1≥y2x的取值范围;

(3)过点BBEx轴,ADBE于点D,点C是直线BE上一点,若∠DAC30°,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线x轴交于AB两点,与y轴交于点C,顶点为D,连接BC

G是直线BC上方抛物线上一动点不与BC重合,过点Gy轴的平行线交直线BC于点E,作于点F,点MN是线段BC上两个动点,且,连接DM的周长最大时,求的最小值;

如图2,连接BD,点P是线段BD的中点,点Q是线段BC上一动点,连接DQ,将沿PQ翻折,且线段的中点恰好落在线段BQ上,将绕点O逆时针旋转得到,点T为坐标平面内一点,当以点QT为顶点的四边形是平行四边形时,求点T的坐标.

查看答案和解析>>

同步练习册答案