【题目】在平面直角坐标系中,抛物线与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.
(1)求抛物线的解析式和顶点C的坐标;
(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;
(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.
【答案】(1),(-1,4) (2)(-2,3),,
(3)(-4,-5),(,)
【解析】
(1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax2+bx+3求出即可;(2)求出直线AD的解析式,分别过点C、H作AD的平行线,与抛物线交于点E,利用△ADE与△ACD面积相等,得出直线EC和直线EH的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P在对称轴左侧;②点P在对称轴右侧.
(1)设抛物线的解析式为,
∵抛物线过点A(-3,0),B(1,0),D(0,3),
∴,解得,a=-1,b=-2,c=3,
∴抛物线解析式为,顶点C(-1,4);
(2)如图1,∵A(-3,0),D(0,3),
∴直线AD的解析式为y=x+3,
设直线AD与CH交点为F,则点F的坐标为(-1,2)
∴CF=FH,
分别过点C、H作AD的平行线,与抛物线交于点E,
由平行间距离处处相等,平行线分线段成比例可知,△ADE与△ACD面积相等,
∴直线EC的解析式为y=x+5,
直线EH的解析式为y=x+1,
分别与抛物线解析式联立,得,,
解得点E坐标为(-2,3),,;
(3)①若点P在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH,
∴,
分别过点C、P作x轴的平行线,过点Q作y轴的平行线,交点为M和N,
由△CQM∽△QPN,
得=2,
∵∠MCQ=45°,
设CM=m,则MQ=m,PN=QN=2m,MN=3m,
∴P点坐标为(-m-1,4-3m),
将点P坐标代入抛物线解析式,得,
解得m=3,或m=0(与点C重合,舍去)
∴P点坐标为(-4,-5);
②若点P在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH,
∴,
延长CD交x轴于M,∴M(3,0)
过点M作CM垂线,交CP延长线于点F,作FNx轴于点N,
∴,
∵∠MCH=45°,CH=MH=4
∴MN=FN=2,
∴F点坐标为(5,2),
∴直线CF的解析式为y=,
联立抛物线解析式,得,解得点P坐标为(,),
综上所得,符合条件的P点坐标为(-4,-5),(,).
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:AD是△ABC的高,且BD=CD.
(1)如图1,求证:∠BAD=∠CAD;
(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;
(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:
()如图①,中,,,,点是边上任意一点,则的最小值为__________.
()如图②,矩形中,,,点、点分别在、上,求的最小值.
()如图③,矩形中,,,点是边上一点,且,点是边上的任意一点,把沿翻折,点的对应点为点,连接、,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)(参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知△ABC中,∠ACB=90°,CA=CB,点D,E分别在CB,CA上,且CD=CE,连AD,BE,F为AD的中点,连CF.
(1)求证:CF=BE,且CF⊥BE;
(2)将△CDE绕点C顺时针旋转一个锐角(如图2),其它条件不变,此时(1)中的结论是否仍成立?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示.解答问题:
(1)请按要求对△ABO作如下变换:
①将△OAB向下平移2个单位,再向左平移3个单位得到△O1A1B1;
②以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA2B2.
(2)写出点A1,A2的坐标: , ;
(3)△OA2B2的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com