精英家教网 > 初中数学 > 题目详情
如图①,直线y=x-3与x轴、y轴分别交于B、C两点,点A在x轴负半轴上,且
OA
OC
=
1
3
,抛物线经过A、B、C三点,D为线段AB中点,点P(m,n)是该抛物线上的一个动点(其中m>0,n<0),连接DP交BC于点E.
(1)写出A、B、C三点的坐标,并求抛物线的解析式;
(2)当△BDE是等腰三角形时,直接写出此时点E的坐标;
(3)连接PC、PB(如图②),△PBC是否有最大面积?若有,求出△PBC的最大面积和此时P点的坐标;若没有,请说明理由.
精英家教网
分析:(1)利用待定系数法求出二次函数解析式;
(2)运用等腰三角形的性质,分三种情况讨论,即可解决;
(3)求出△PBC的最大面积,可以联系二次函数的最值问题.
解答:解:(1)A(-1,0),B(3,0),C(0,-3)
设抛物线解析式为y=a(x+1)(x-3),把C(0,-3)代入得-3a=-3,解得a=1.
∴抛物线的解析式为y=x2-2x-3.

(2)E1(2,-1),E23-
2
, -
2
),E3(1,-2).

(3)作PF⊥x轴于点F,设△PBC的面积为S,则精英家教网
S=S四边形OCPF+S△PFB-S△OBC
=
1
2
(3-n)m+
1
2
(3-m)(-n)-
1
2
×3×3,
=
3
2
m-
3
2
n-
9
2

又∵点P是抛物线上的点,
且m>0,n<0
∴n=m2-2m-3(0<m<3)
S=-
3
2
m2+
9
2
m

=-
3
2
(m-
3
2
)2+
27
8

∴当m=
3
2
时,△PBC的面积最大,最大面积为
27
8

此时P点坐标为(
3
2
, -
15
4
)
点评:此题主要考查了用待定系数法求二次函数解析式,以及二次函数最值问题,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面直角坐标中,直角梯形OABC的顶点A的坐标为(4,0),直线y=-
14
x+3经过顶点B,与y轴交于顶点C,AB∥OC.
(1)求顶点B的坐标;
(2)如图2,直线l经过点C,与直线AB交于点M,点O?为点O关于直线l的对称点,连接CO?,并延长交直线AB于第一象限的点D,当CD=5时,求直线l的解析式;
(3)在(2)的条件下,点P在直线l上运动,点Q在直线OD上运动,以P、Q、B、C为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,该直线是某个一次函数的图象,则此函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,在直线l上取A,B两点,使AB=10厘米,若在l上再取一点C,使AC=2厘米,M,N分别是AB,AC中点.求MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,两直线y1=ax+3与y2=
14
x相交于P点,当y2<y1≤3时,x的取值范围为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•南岗区一模)如图1,直线y=-kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.
(1)求直线AB的解析式;
(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA-AB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,过P作x轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=
12
时,求t值.

查看答案和解析>>

同步练习册答案