【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时
①请说明△ADC≌△CEB的理由;
②请说明DE=AD+BE的理由;
(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系:__________;
(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系:__________.
【答案】(1)①证明见详解;②证明见详解;(2)DE=AD﹣BE;(3)DE=BE﹣AD.
【解析】
(1)①根据题意得∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,即∠DAC=∠BCE,再根据AAS即可得证;
②由①得到AD=CE,CD=BE,即可得证;
(2)类似(1)可证得∠ACD=∠EBC,推出△ADC≌△CEB,则AD=CE,CD=BE,代入已知即可得打答案;
(3)证明方法同(2).
(1)①证明:如图1中,
∵AD⊥DE,BE⊥DE,
∴∠ADC=∠BEC=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,
∴∠DAC=∠BCE,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS);
②证明:由①知△ADC≌△CEB,
∴AD=CE,CD=BE,
∵DC+CE=DE,
∴AD+BE=DE;
(2)结论:DE=AD﹣BE.
理由如下:
如图2中,∵BE⊥EC,AD⊥CE,
∴∠ADC=∠BEC=90°,
∴∠EBC+∠ECB=90°,
∵∠ACB=90°,
∴∠ECB+∠ACE=90°,
∴∠ACD=∠EBC,
在△ADC与△CEB中,
,
∴△ADC≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=EC-CD=AD-BE;
(3)结论:DE=BE﹣AD.
理由如下:如图3中,∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
又∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CED=90°,
∴∠ACD+∠DAC=90°,
∴∠DAC=∠ECB,
在△ACD与△CBE中,
,
∴△ACD≌△CBE(AAS),
∴AD=CE,CD=BE,
∴DE=CD-CE=BE-AD.
科目:初中数学 来源: 题型:
【题目】某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价1元,那么每月就可以多售出5个.
降价前销售这种学习机每月的利润是多少元?
经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?
在的销售中,销量可好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,D是AC边上一动点,CE⊥BD于E.
(1)如图(1),若BD平分∠ABC时,①求∠ECD的度数;②延长CE交BA的延长线于点F,补全图形,探究BD与EC的数量关系,并证明你的结论;
(2)如图(2),过点A作AF⊥BE于点F,猜想线段BE,CE,AF之间的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019 年 3 月 31 日,南京地铁新的价格方案正式实施,实行消费累进优惠.普通成人每月持卡乘坐地铁,当消费累计金额不超过 150 元时,每次乘坐地铁的票价打 9.5 折;当消费累计金 额超过 150 元时,达到规定的消费累计金额后的乘次,票价所打折扣如下表所示:
消费累计金额(元) | 折扣 |
9折 | |
8折 | |
9.5折 |
小明上、下班每次乘坐的地铁单程票价为 10元,2019年 4月份他上、下班持卡共乘坐了 40次.
(1)填表:
第1 次 | 第2 次 | … | 第15次 | 第16次 | 第17次 | … | |
消费累计 金额(元) | 9.5 | 19 | … | 142.5 | 152 | … |
span>
(2)小明当月第几次乘车后,消费累计金额超过 20元?(用一元一次不等式解决问题)
(3)小明 4月份上、下班持卡乘坐地铁的消费累计金额为 元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC 的平分线AE于E,EF⊥AB于F,EG⊥AC交AC延长线于G. AB=6, AC=3,求BF 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度为2 026,则n的值为( ).
A. 407B. 406C. 405D. 404
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把抛物线y=ax+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x-3x+5,则a+b+c=__________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据PM2.5检测网的空气质量新标准,从德州市2013年全年每天的PM2.5日均值标准值(单位:微克/立方米)监测数据中随机地抽取25天的数据作为样本,并根据检测数据制作了尚不完整的频数分布表和条形图:
(1)求出表中m,n,a的值,并将条形图补充完整;
(2)以这25天的PM2.5日均值来估计该年的空气质量情况,估计该年(365天)大约有多少天的空气质量达到优或良;
(3)请你结合图表评价一下我市的空气质量情况.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com