分析 由OA1=A1A2=A2A3=…=An-1An=1可知P1点的坐标为(x1,1),P2点的坐标为(x2,2),P3点的坐标为(x3,3)…Pn点的坐标为(xn,n),把y=1,y=2,y=3…y=n代入反比例函数的解析式即可求出x1、x2、x3…xn的值,再由三角形的面积公式可得出S1、S2、S3…Sn-1的值,故可得出结论.
解答 解:∵OA1=A1A2=A2A3=…=An-1An=1,
∴设P1(x1,1),P2(x2,2),P3(x3,3),…Pn(xn,n),
∵P1,P2,P3…Pn在反比例函数y=$\frac{2}{x}$(x>0)的图象上,
∴x1=2,x2=1,x3=$\frac{2}{3}$…xn=$\frac{2}{n}$,
∴S1=$\frac{1}{2}$×(x1-x2)×1=$\frac{1}{2}$×1×(2-1)=1-$\frac{1}{2}$;
S2=$\frac{1}{2}$×1×(x2-x3)=$\frac{1}{2}$×1×(1-$\frac{2}{3}$)=$\frac{1}{2}$-$\frac{1}{3}$;
S3=$\frac{1}{2}$×1×(x3-x4)=$\frac{1}{2}$×1×($\frac{2}{3}$-$\frac{1}{2}$)=$\frac{1}{3}$-$\frac{1}{4}$;
…
Sn-1=$\frac{1}{2}$($\frac{2}{n-1}$-$\frac{2}{n}$),
∴S1+S2+S3+…+Sn-1=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$=1-$\frac{1}{n}$.
故答案为:1-$\frac{1}{n}$.
点评 本题考查的是反比例函数综合题,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 品名 | 茄子 | 豆角 |
| 批发价(元/千克) | 3.0 | 3.5 |
| 零售价(元/千克) | 4.5 | 5.2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3m2n与3nm2 | B. | $-\frac{1}{4}{x^2}{y^{c+6}}$xy2与2x2+ay3x2y2 | ||
| C. | -5ab与-5×103ab | D. | 35与-12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com