【题目】如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△ABD的面积是4.求证:四边形ABCD是矩形.
【答案】证明见试题解析.
【解析】试题分析:首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后根据△ABE的面积得到整个四边形的面积和AD的长,根据平行四边形的面积计算方法得当DA⊥AB即可判定矩形.
试题解析:作EF⊥AB于点F,∵AB∥CD,∴∠1=∠2,∠3=∠4,在△ABE和△CDE中,∵∠1=∠2,∠3=∠4,BD=CE,∴△ABE≌△CDE,∴AE=CE,∴四边形ABCD是平行四边形,∵CD=4,△AEB的面积是2,∴EF=1,∴AD=2EF=2,∵平行四边形ABCD的面积为△ABE的面积的4倍,∴S四边形ABCD=8,∴DA⊥AB,∴四边形ABCD是矩形.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】去括号正确的是( )
A.a2﹣(a﹣b+c)=a2﹣a﹣b+c
B.5+a﹣2(3a﹣5)=5+a﹣6a+10
C.3a﹣ (3a2﹣2a)=3a﹣a2﹣ a
D.a3﹣[a2﹣(﹣b)]=a3﹣a2+b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是( )
A.y=5(x+2)2+3
B.y=5(x﹣2)2+3
C.y=5(x﹣2)2﹣3
D.y=5(x+2)2﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com