【题目】若函数f(x)=(x2﹣ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则曲线f(x)在点(0,f(0))处切线的方程为 .
科目:初中数学 来源: 题型:
【题目】工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉兴教育学院大学生小王利用暑假开展了30天的社会实践活动,参与了嘉兴浙北超市的经营,了解到某成本为15元/件的商品在x天销售的相关信息,如表表示:
销售量p(件) | P=45﹣x |
销售单价q(元/件) | 当1≤x≤18时,q=20+x |
设该超市在第x天销售这种商品获得的利润为y元.
(1)求y关于x的函数关系式;
(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设不等式0<|x+2|﹣|1﹣x|<2的解集为M,a,b∈M
(1)证明:|a+ b|< ;
(2)比较|4ab﹣1|与2|b﹣a|的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣a(a∈R)与函数 有公共切线. (Ⅰ)求a的取值范围;
(Ⅱ)若不等式xf(x)+e>2﹣a对于x>0的一切值恒成立,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.
(1)求证:PA⊥平面ABCD;
(2)求直线BF与平面AFD所成角的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设F为抛物线y2=4x的焦点,A,B,C为该抛物线上不同的三点, + + = ,O为坐标原点,且△OFA、△OFB、△OFC的面积分别为S1、S2、S3 , 则S12+S22+S32=( )
A.2
B.3
C.6
D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(φ>0,﹣π<φ<0)的最小正周期是π,将f(x)图象向左平移 个单位长度后,所得的函数图象过点P(0,1),则函数f(x)( )
A.在区间[﹣ , ]上单调递减
B.在区间[﹣ , ]上单调递增
C.在区间[﹣ , ]上单调递减
D.在区间[﹣ , ]上单调递增
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com