精英家教网 > 初中数学 > 题目详情

【题目】若函数f(x)=(x2﹣ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则曲线f(x)在点(0,f(0))处切线的方程为

【答案】x﹣y+6=0
【解析】解:f′(x)=ex[x2+(2﹣a)x+1], 若f(x)在(1,3)只有1个极值点,
则f′(1)f′(3)<0,
即(a﹣4)(3a﹣16)<0,
解得:4<a< ,a∈N,
故a=5;
故f(x)=ex(x2﹣5x+6),f′(x)=ex(x2﹣3x+1),
故f(0)=6,f′(0)=1,
故切线方程是:y﹣6=x,
故答案为:x﹣y+6=0.
求出函数的导数,根据f′(1)f′(3)<0,得到关于a的不等式,求出a的值,从而计算f(0),f′(0)的值,求出切线方程即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉兴教育学院大学生小王利用暑假开展了30天的社会实践活动,参与了嘉兴浙北超市的经营,了解到某成本为15元/件的商品在x天销售的相关信息,如表表示:

销售量p(件)

P=45﹣x

销售单价q(元/件)

当1≤x≤18时,q=20+x
当18<x≤30时,q=38

设该超市在第x天销售这种商品获得的利润为y元.
(1)求y关于x的函数关系式;
(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知P是抛物线y2=4x上的动点,Q在圆C:(x+3)2+(y﹣3)2=1上,R是P在y轴上的射影,则|PQ|+|PR|的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设不等式0<|x+2|﹣|1﹣x|<2的解集为M,a,b∈M
(1)证明:|a+ b|<
(2)比较|4ab﹣1|与2|b﹣a|的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(a∈R)与函数 有公共切线. (Ⅰ)求a的取值范围;
(Ⅱ)若不等式xf(x)+e>2﹣a对于x>0的一切值恒成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.
(1)求证:PA⊥平面ABCD;
(2)求直线BF与平面AFD所成角的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设F为抛物线y2=4x的焦点,A,B,C为该抛物线上不同的三点, + + = ,O为坐标原点,且△OFA、△OFB、△OFC的面积分别为S1、S2、S3 , 则S12+S22+S32=(
A.2
B.3
C.6
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(φ>0,﹣π<φ<0)的最小正周期是π,将f(x)图象向左平移 个单位长度后,所得的函数图象过点P(0,1),则函数f(x)(
A.在区间[﹣ ]上单调递减
B.在区间[﹣ ]上单调递增
C.在区间[﹣ ]上单调递减
D.在区间[﹣ ]上单调递增

查看答案和解析>>

同步练习册答案