精英家教网 > 初中数学 > 题目详情
4.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).
(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;
(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.
①当t为何值时,EF平分∠AOB?
②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.

分析 (1)根据:角度=速度×时间进行计算,由等量关系:直角边OB恰好平分∠NOE,列出方程求解即可.
(2)①由于OE的旋转速度快,需要考虑2种情形列方程解决.
②通过计算分析,OE,OB的位置,需要考虑2种情形列方程解决.

解答 解:(1)∵当直角边OB恰好平分∠NOE时,∠NOB=$\frac{1}{2}$∠NOE=$\frac{1}{2}$(180°-30°)=75°,
∴90°-3t°=75°,
解得:t=5.
此时∠MOA=3°×5=15°=$\frac{1}{2}$∠MOE,
∴此时OA平分∠MOE.
(2)①OE平分∠AOB,
依题意有30°+9t-3t=90°÷2,
解得t=2.5;
OF平分∠AOB,
依题意有30°+9t-3t=180°+90°÷2,
解得t=32.5.
故当t为2.5s或32.5s时,EF平分∠AOB
②OB在MN上面,
依题意有180°-30°-9t=(90°-3t)÷2,
解得t=14;
OB在MN下面,
依题意有9t-(360°-30°)=(3t-90°)÷2,
解得t=38.
故EF能平分∠NOB,t的值为14s或38s.

点评 本题目考查了角平分线的定义,旋转的速度,角度,时间的关系,应用方程的思想是解决问题的关键,还需要通过计算进行初步估计位置,掌握分类思想,注意不能漏解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,点A在双曲线y=$\frac{k}{x}$(x>0)上,点B在直线y=-0.5x+5上,
(1)直线y=-0.5x+5与两坐标轴围成的三角形的面积是25;
(2)若∠OAB=90°,AB=AO,且点A的纵坐标为-2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某同学误将“A-B”看成求“A+B”,结果求出的答案是3x2-2x+5,已知A=4x2-3x-6,请正确求出A-B.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边的中线,点E、F分别是AB、AC的中点,连接DE、DF.
(1)求证:△AED是等边三角形;
(2)若AB=2,则四边形AEDF的周长是4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,求证:①BF=AC;②BF=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某服装店计划从批发市场购进甲、乙两种不同款式的服装共80件进行销售.已知每件甲款服装的价格比每件乙款服装的价格贵10元,购买30件甲款服装的费用比购买35件乙款服装的费用少100元.
(1)求购进甲、乙两种款式的服装每件的价格各是多少元?
(2)若该服装店购进乙款服装的件数是甲款服装件数的3倍,并都以每件120元的价格进行销售.经过一段时间,甲款服装全部售完,乙款服装还余20件未售完,该店决定对余下服装打8折销售.求该店把这批服装全部售完获得的利润.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成,利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两个端点上,若CD=3.2cm,则AB的长为9.6cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.坐标平面内,过点(2,0)作x轴的垂线m,那么点M(-1,3)关于m的对称点的坐标是(5,3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方,
如3+2$\sqrt{2}$=(1+$\sqrt{2}$)2,善于思考的小明进行了以下探索:
设a+b$\sqrt{2}$=(m+n$\sqrt{2}$)2(其中a、b、m、n均为正整数)则有:a+b$\sqrt{2}$=m2+2n2+2mn$\sqrt{2}$,所以a=m2+2n2,b=2mn.这样小明就找到了一种把a+b$\sqrt{2}$的式子化为平方式的方法.
请仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b$\sqrt{3}$=(m+n$\sqrt{3}$)2,用含m、n的式子分别表示a、b,得a=m2+3n2,b=2mn
(2)若a+4$\sqrt{3}$=(m+n$\sqrt{3}$)2(其中a、b、m、n均为正整数),求a的值.

查看答案和解析>>

同步练习册答案