ÏÈÔĶÁÏÂÁвÄÁÏ£¬È»ºó½â´ðÎÊÌ⣺
´ÓA£¬B£¬CÈýÕÅ¿¨Æ¬ÖÐÑ¡Á½ÕÅ£¬ÓÐÈýÖÖ²»Í¬Ñ¡·¨£¬³éÏó³ÉÊýѧÎÊÌâ¾ÍÊÇ´Ó3¸öÔªËØÖÐÑ¡È¡2¸öÔªËØ×éºÏ£¬¼Ç×÷C23=
3¡Á2
2¡Á1
=3£®
Ò»°ãµØ£¬´Óm¸öÔªËØÖÐÑ¡È¡n¸öÔªËØ×éºÏ£¬¼Ç×÷£ºCnm=
m(m-1)¡­(m-n+1)
n(n-1)¡­¡Á3¡Á2¡Á1

Àý£º´Ó7¸öÔªËØÖÐÑ¡5¸öÔªËØ£¬¹²ÓÐC57=
7¡Á6¡Á5¡Á4¡Á3
5¡Á4¡Á3¡Á2¡Á1
=21
ÖÖ²»Í¬µÄÑ¡·¨£®
ÎÊÌ⣺´ÓijѧϰС×é10ÈËÖÐÑ¡È¡3È˲μӻ£¬²»Í¬µÄÑ¡·¨¹²ÓÐ
 
ÖÖ£®
·ÖÎö£ºÓÉ´Óm¸öÔªËØÖÐÑ¡È¡n¸öÔªËØ×éºÏ£¬¼Ç×÷£ºCnm=
m(m-1)¡­(m-n+1)
n(n-1)¡­¡Á3¡Á2¡Á1
¹æÂɿɵã®
½â´ð£º½â£º´ÓijѧϰС×é10ÈËÖÐÑ¡È¡3È˲μӻ£¬²»Í¬µÄÑ¡·¨ÓÐ
10¡Á9¡Á8
3¡Á2¡Á1
=120ÖÖ£®
´ð£º²»Í¬µÄÑ¡·¨¹²ÓÐ120ÖÖ£®
µãÆÀ£º½â´ð´ËÀàÌâÄ¿Ò»¶¨ÒªÈÏÕæ¹Û²ìºÍ·ÖÎöÊý¾Ý£¬´ÓÖÐÕÒ³ö¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁÏÂÁвÄÁÏ£¬È»ºó½â´ðÎÊÌ⣮
´ÓA¡¢B¡¢C 3ÕÅ¿¨Æ¬ÖÐÑ¡2ÕÅ£¬ÓÐ3ÖÖ²»Í¬µÄÑ¡·¨£¬³éÏó³ÉÊýѧÎÊÌâ¾ÍÊÇ´Ó3¸öÔªËØÖÐÑ¡È¡2¸öÔªËØ×éºÏ£¬²»Í¬µÄÑ¡·¨¹²ÓÐC23=
3¡Á2
2¡Á1
=3£¨ÖÖ£©£¬
Ò»°ãµØ£¬´Óm¸öÔªËØÖÐÑ¡È¡n¸öÔªËØ£¨n¡Üm£©×éºÏ£¬¼Ç×÷Cnm=
m(m-1)¡­(m-n+1)
n(n-1)¡Á¡­¡Á3¡Á2¡Á1
£®
ÀýÈ磬´Ó7¸öÔªËØÖÐÑ¡È¡5¸öÔªËØ×éºÏ£¬²»Í¬µÄÑ¡·¨¹²ÓÐC57=
7¡Á6¡Á5¡Á4¡Á3
5¡Á4¡Á3¡Á2¡Á1
=21£¨ÖÖ£©£®
ÎÊ£º´Óij¸ö10È˵ÄѧϰС×éÖÐÑ¡È¡3È˲μӻ£¬²»Í¬µÄÑ¡·¨¹²ÓжàÉÙÖÖ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁÏÂÁвÄÁÏ£¬È»ºó½â´ðÎÊÌ⣺
²ÄÁÏ1£º´ÓÈýÕŲ»Í¬µÄ¿¨Æ¬ÖÐÑ¡³öÁ½ÕÅÅųÉÒ»ÁУ¬ÓÐ6ÖÖ²»Í¬µÄÅÅ·¨£¬³éÏó³ÉÊýѧÎÊÌâ¾ÍÊÇ´Ó3¸ö²»Í¬µÄÔªËØÖÐÑ¡È¡2¸öÔªËصÄÅÅÁУ¬ÅÅÁÐÊý¼ÇΪA32=3¡Á2=6£®
Ò»°ãµØ£¬´Ón¸ö²»Í¬µÄÔªËØÖÐÑ¡È¡m¸öÔªËصÄÅÅÁÐÊý¼Ç×÷Anm£®Anm=n£¨n-1£©£¨n-2£©£¨n-3£©¡­£¨n-m+1£©£¨m¡Ün£©
Àý£º´Ó5¸ö²»Í¬µÄÔªËØÖÐÑ¡È¡3¸öÔªËØÅųÉÒ»ÁеÄÅÅÁÐÊýΪ£ºA53=5¡Á4¡Á3=60£®
²ÄÁÏ2£º´ÓÈýÕŲ»Í¬µÄ¿¨Æ¬ÖÐÑ¡È¡Á½ÕÅ£¬ÓÐ3ÖÖ²»Í¬µÄÑ¡·¨£¬³éÏó³ÉÊýѧÎÊÌâ¾ÍÊÇ´Ó3¸öÔªËØÖÐÑ¡È¡2¸öÔªËصÄ×éºÏ£¬×éºÏÊýΪ
C
2
3
=
3¡Á2
2¡Á1
=3
£®
Ò»°ãµØ£¬´Ón¸ö²»Í¬µÄÔªËØÖÐÈ¡³öm¸öÔªËصÄÅÅÁÐÊý¼Ç×÷Anm£¬
Anm=n£¨n-1£©£¨n-2£©£¨n-3£©¡­£¨n-m+1£©£¨m¡Ün£©
Àý£º´Ó6¸ö²»Í¬µÄÔªËØÑ¡3¸öÔªËصÄ×éºÏÊýΪ£º
C
3
6
=
6¡Á5¡Á4
3¡Á2¡Á1
=20
£®
ÎÊ£º£¨1£©´Óij¸öѧϰС×é8ÈËÖÐÑ¡È¡3È˲μӻ£¬ÓÐ
 
ÖÖ²»Í¬µÄÑ¡·¨£»
£¨2£©´Ó7¸öÈËÖÐÑ¡È¡4ÈË£¬ÅųÉÒ»ÁУ¬ÓÐ
 
ÖÖ²»Í¬µÄÅÅ·¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

31¡¢ÏÈÔĶÁÏÂÁвÄÁÏ£¬È»ºóÍê³ÉÏÂÁÐÌî¿Õ£º
µãA¡¢BÔÚÊýÖáÉÏ·Ö±ð±íʾʵÊý a¡¢b£¬A¡¢BÁ½µãÖ®¼äµÄ¾àÀë±íʾΪ|AB|£¬µ±A¡¢BÁ½µãÖÐÓÐÒ»µãÔÚÔ­µãʱ£¬²»·ÁÉèAµãÔÚÔ­µã£¬Èçͼ1|AB|=|OB|=|b|=|b-0|=|a-b|£»
µ±A¡¢BÁ½µã¶¼²»ÔÚÔ­µãʱ£¬
¢ÙÈçͼ2£¬A¡¢BÁ½µã¶¼ÔÚÔ­µãµÄÓұߣ¬|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|
¢ÚÈçͼ3£¬A¡¢BÁ½µã¶¼ÔÚÔ­µãµÄ×ó±ß£¬|AB|=|OB|-|OA|=|b|-|a|=-b-£¨-a£©=|a-b|
¢ÛÈçͼ4£¬A¡¢BÁ½µã·Ö±ðÔÚÔ­µãµÄÁ½±ß£¬|AB|=|OB|+|OA|=|b|+|a|=a+£¨-b£©=|a-b|
×ÛÉÏËùÊö£¬
£¨1£©ÉÏÊö²ÄÁÏÓõ½µÄÊýѧ˼Ïë·½·¨ÊÇ
ÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛ
£¨ÖÁÉÙд³ö2¸ö£©
£¨2£©ÊýÖáÉÏA¡¢BÁ½µãÖ®¼äµÄ¾àÀë|AB|=|a-b|£®»Ø´ðÏÂÁÐÎÊÌ⣺
ÊýÖáÉϱíʾ2ºÍ5µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ
3
£»ÊýÖáÉϱíʾ-2ºÍ-5µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ
3
£»ÊýÖáÉϱíʾ1ºÍ-4µÄÁ½µãÖ®¼äµÄ¾àÀëÊÇ
5
£»
£¨3£©ÊýÖáÉϱíʾxºÍ-1µÄÁ½µãAºÍBÖ®¼äµÄ¾àÀëÊÇ
|x+1|
£»Èç¹û|AB|=2£¬ÄÇôxΪ
1»ò-3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁÏÂÁвÄÁÏ£¬È»ºó½â´ðÎÊÌâ
Èô¹ØÓÚxµÄ·½³Ì£ºmx-3=3x+5½âÊÇÕýÕûÊý£¬ÇómµÄÕûÊýÖµ£®
½â£ºÓÉ·½³Ì£ºmx-3=3x+5µÃ£º
mx+3x=5+3
¼´£º(m+3)x=8
¡ßxÊÇÕýÕûÊý£¬mÊÇÕûÊý
¡àm+3ÊÇ8µÄÕýÕûÊýÔ¼Êý
¡àm+3=1»òm+3=2»òm+3=4»òm+3=8
¡àm=-2»òm=-1»òm=1»òm=5

ÊÔ·ÂÕÕÉÏÃæµÄ½â·¨£¬»Ø´ðÏÂÃæµÄÎÊÌ⣺
Èô¹ØÓÚyµÄ·½³Ì£ºny+y+5=-4y+12½âÊÇÕýÕûÊý£¬ÇónµÄÕûÊýÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸