精英家教网 > 初中数学 > 题目详情

【题目】如图,在一笔直的海岸线上有AB两上观测站,AB的正东方向,BP6(单位:km).有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.

1)求AB两观测站之间的距离;

2)小船从点P处沿射线AP的方向进行沿途考察,求观测站B到射线AP的最短距离.

【答案】km;km

【解析】

1)过点于点,先解,得到的长,再解,得到的长,然后根据,即可求解;

2)过点于点,解直角三角形即可得到结论.

(1)如图,过点P作PD⊥AB于点D.

在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,

∴BD=PD=6km.

在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,

∴AD=PD=km,

∴AB=BD+AD=km;

(2)如图,过点B作BF⊥AC于点F,

则∠BAP=30°,

∵AB=

∴BF=AB=km.

∴观测站B到射线AP的最短距离为km.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在 11×16 的网格图中,△ABC 三个顶点坐标分别为 A(﹣4,0),B(﹣1,1),C(﹣2,3).

(1)请画出△ABC 沿x 轴正方向平移4个单位长度所得到的△A1B1C1

(2)以原点O为位似中心,将(1)中的△A1B1C1 放大为原来的3倍得到△A2B2C2,请在第一象限内画出△A2B2C2,并直接写出△A2B2C2 三个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DEAC,垂足为点E

求证:(1)ABC是等边三角形;

(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.

1)作ABC关于点C成中心对称的A1B1C1

2)将A1B1C1向右平移4个单位,作出平移后的A2B2C2

3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,把直线y=x向左平移1个单位可得到一次函数y=x+1的图象,把直线y=kx(k≠0)向左平移1个单位可得到一次函数y=k(x+1)的图象,把抛物线y=ax2(a≠0)向左平移1个单位,可得到二次函数y=a(x+1)2的图象.类似的:我们将函数y=∣x∣向左平移1个单位,在平面直角坐标系中画出了新函数的部分图象,并请回答下列问题:

(1)平移后的函数解析式是__________

(2)借助下列表格,用你认为最简单的方法补画平移后的函数图象:

(3)x 时,yx的增大而增大;当x 时,yx的增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EBC上的一点,连接AE,过B点作BHAE,垂足为点H,延长BHCD于点F,连接AF.

(1)求证AE=BF;

(2)若正方形的边长是5,BE=2,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 xOy 中,已知正比例函数 y1=﹣2x 的图象与反比例函数 y2的图象交于 A(﹣1,a),B 两点.

(1)求出反比例函数的解析式及点 B 的坐标;

(2)观察图象,请直接写出满足 y≤2 的取值范围;

(3) P 是第四象限内反比例函数的图象上一点,若POB 的面积为 1,请直接写出点 P的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形 ABCD 中,点 EF 分别在 BC AB 上,BE3AF2BF4,将△ BEF 绕点 E 顺时针旋转,得到△GEH,当点 H 落在 CD 边上时,FH 两点之间的距离为_____

查看答案和解析>>

同步练习册答案