精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.
(1)求证:BD=BE;
(2)若DE=2,BD= ,求CE的长.

【答案】
(1)解:设∠BAD=α,

∵AD平分∠BAC

∴∠CAD=∠BAD=α,

∵AB是⊙O的直径,∴∠ACB=90°,

∴∠ABC=90°﹣2α,

∵BD是⊙O的切线,

∴BD⊥AB,

∴∠DBE=2α,

∠BED=∠BAD+∠ABC=90°﹣α,

∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,

∴∠D=∠BED,

∴BD=BE


(2)解:设AD交⊙O于点F,CE=x,则AC=2x,连接BF,

∵AB是⊙O的直径,

∴∠AFB=90°,

∵BD=BE,DE=2,

∴FE=FD=1,

∵BD=

∴tanα=

∴AB= =2

在Rt△ABC中,

由勾股定理可知:(2x)2+(x+ 2=(2 2

∴解得:x=﹣ 或x=

∴CE=


【解析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD= ,所以tanα= ,从而可求出AB= =2 ,利用勾股定理列出方程即可求出x的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知某开发区有一块四边形的空地,如图所示,现计划在空地上种植草皮,经测量AB=3mBC=12mCD=13mDA=4m,若每平方米草皮需要200元,问要多少投入?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:

(1)过点A作BC的平行线;

(2)过点C作AB的平行线,与(1)中的平行线交于点D;

(3)过点B作AB的垂线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn , 那么λ6=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC会平行吗?说明理由

(2)ADBC的位置关系如何?为什么?

(3)BC平分∠DBE?为什么

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两点在数轴上对应的数是ab,且,点P为数轴上一动点,对应的数为x.

1)求AB两点间的距离;

2)是否存在点P,使AP=PB,若存在,求出x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列定义一种关于n的运算:n是奇数时,结果为3n+5 ②n为偶数时结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是(  )

A. 1 B. 2 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了美化校园计划购买茶花、桂花两种树苗共600株,茶花树苗每株35元,桂花树苗每株40元.相关资料表明:茶花、桂花树苗的成活率分别为80%,90%.
(1)若购买这两种树苗共用去22000元,则茶花、桂花树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于85%,则茶花树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.

查看答案和解析>>

同步练习册答案