精英家教网 > 初中数学 > 题目详情

【题目】如图,已知矩形ABCDBCEFAFBEAFBE交于点G,∠AGB=60°.

(1)求证:AFDE

(2)AB=6,BC=8,求AF

【答案】(1)证明见解析;(2)AF=10.

【解析】

(1)欲证明AF=DE,只要证明四边形ADEF是平行四边形即可;

(2)连接BD.利用勾股定理求出BD,再证明BDE是等边三角形即可.

(1)∵四边形ABCD是矩形,

ADBC,AD=BC,

∵四边形BCEF是平行四边形,

BCEF,BC=EF,

AD=EF,ADEF,

∴四边形ADEF是平行四边形,

AF=DE;

(2)连接BD,

∵四边形ABCD是矩形,

∴∠BCD=90°,CD=AB=6,

BC=8,

BD==10,

∵四边形ADEF是平行四边形,

AFDE,

∴∠AGB=BED=60°,

AF=DE=BE,

∴△BDE是等边三角形,

AF=BE=BD=10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四张小卡片上分别写有数字1234,它们除数字外没有任何区别,现将它们放在盒子里搅匀.

1)随机地从盒子里抽取一张,求抽到数字3的概率;

2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(xy)在函数图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家推行节能减排,低碳经济政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于80万元,已知这种设备的月产量x(套)与每套的售价y(万元)之间满足关系式y=150﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.

(1)直接写出y2x之间的函数关系式;

(2)求月产量x的范围;

(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018129日诸暨迎来首届马拉松盛典——西施马拉松。我们一起用诸暨精神见证了诸暨奇迹”!马拉松期间为了缓解市区内一些主要路段交通拥挤的现状,市交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°45°.求路况显示牌BC的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°AD∠BAC的平分线,OAB上一点, OA为半径的⊙O经过点D

1)求证:BC⊙O切线;

2)若BD=5DC=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从热气球C处测得地面A、B两点的俯角分别为45°、30°,如果此时热气球C处离地面的高度CD为100米,且点A、D、B在同一直线上,求AB两点间的距离(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.

(1)加工成的正方形零件的边长是多少mm?

(2)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少?请你计算.

(3)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.

(1)求证:四边形ABEF是平行四边形;

(2)∠ABC为多少度时,四边形ABEF为矩形?请说明理由.

查看答案和解析>>

同步练习册答案