精英家教网 > 初中数学 > 题目详情

【题目】如图1,AB是O的直径,E是AB延长线上一点,EC切O于点C,OPAO交AC于点P,交EC的延长线于点D.

(1)求证:PCD是等腰三角形;

(2)CGAB于H点,交O于G点,过B点作BFEC,交O于点F,交CG于Q点,连接AF,如图2,若sinE=,CQ=5,求AF的值.

【答案】(1)证明见解析;(2)12

【解析】

试题分析:(1)连接OC,由切线性质和垂直性质得1+3=90°、2+4=90°,继而可得3=5得证;

(2)连接OC、BC,先根据切线性质和平行线性质及垂直性质证BCG=QBC得QC=QB=5,而sinE=sinABF=,可知QH=3、BH=4,设圆的半径为r,在RT在OCH中根据勾股定理可得r的值,在RTABF中根据三角函数可得答案.

试题解析:(1)连接OC,EC切O于点C,OCDE,∴∠1+3=90°,又OPOA,∴∠2+4=90°,OA=OC,∴∠1=2,∴∠3=4,又∵∠4=5,∴∠3=5,DP=DC,即PCD为等腰三角形

(2)如图2,连接OC、BCDE与O相切于点E,∴∠OCB+BCE=90°,OC=OB,∴∠OCB=OBC,∴∠OBC+BCE=90°,又CGAB,∴∠OBC+BCG=90°,∴∠BCE=BCG,BFDE,∴∠BCE=QBC,∴∠BCG=QBC,QC=QB=5,BFDE,∴∠ABF=E,sinE=sinABF=QH=3、BH=4,设O的半径为r,OCH中,,解得:r=10,又∵∠AFB=90°,sinABF=AF=12.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:

平均数

众数

中位数

方差

8

8

0.4

9

3.2


(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 . (填“变大”、“变小”或“不变”).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( )

A.AM=BM
B.AP=BN
C.∠MAP=∠MBP
D.∠ANM=∠BNM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知|a+1|=0,b2=4,则a+b=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,点D在AB上,将△BCD绕点C按顺时针方向旋转90°后得△ECF.

(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:

(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;

(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年国家将扩大公共场所免费上网范围,某小区响应号召调查小区居民上网费用情况,随机抽查了30户家庭的月上网费用,结果如表

月网费(元)

50

100

150

户数(人)

15

12

3

则关于这30户家庭的月上网费用,中位数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将不等式2(x+1)﹣1≥3x的解集表示在数轴上,正确的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的漳州市每天浪费大米用科学记数法表示约为(  )

A.9.16×103B.9.16×104C.916×105D.0.916×105

查看答案和解析>>

同步练习册答案