精英家教网 > 初中数学 > 题目详情

如图,正比例函数数学公式的图象与反比例函数数学公式(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△AOM的面积为1,点B(-1,t)为反比例函数在第三象限图象上的点.
(1)试求出k及点B的坐标;
(2)在x轴上是否存在点P,使AB=AP,请直接写出满足条件的点P的坐标.
(3)在y轴上找一点P,使|PA-PB|的值最大,求出P点坐标.

解:(1)∵△AOM的面积为1,
k=1,解得k=2,
∴反比例函数的解析式为y=
把B(-1,t)代入y=得-t=2,解得t=-2,
∴B点坐标为(-1,-2);

(2)存在.
解方程组,则A点坐标为(2,1),
∴AB==3
设P点坐标为(a,0),
∴AP=
∵AB=AP,
=3,解得a1=2+,a2=2-
∴满足条件的点P的坐标为(2+,0),(2-,0);

(3)作B点关于y轴的对称点C,如图,则C点坐标为(1,-2),
∴PB=PC,
∴|PA-PB|=|PA-PC|≤AC,
∴当点P、C、A共线时,|PA-PB|的值最大,
设直线AC的解析式为y=mx+n,
把A(2,1)、C(1,-2)代入得,解得
∴直线AC的解析式为y=3x-5,
把x=0代入y=3x-5得y=-5,
∴P点坐标为(0,-5).
分析:(1)根据反比例函数的比例系数的几何意义得到k=1,解得k=2,则反比例函数的解析式为y=,然后把B(-1,t)代入y=即可确定B点坐标;
(2)先解方程组可确定A点坐标为(2,1),设P点坐标为(a,0),利用两点间的距离公式得到=3,然后解方程求出a,确定P点坐标;
(3)作B点关于y轴的对称点C,如图,则C点坐标为(1,-2),PB=PC,根据三三角形三边的关系得到|PA-PB|=|PA-PC|≤AC(当点P、C、A共线时,取等号),所以,PA-PB|的值为AC,然后利用待定系数法求出直线AC的解析式,再确定该直线与y轴的交点坐标,即P点坐标.
点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、比例系数的几何意义和待定系数法求函数解析式;熟练运用两点间的距离公式计算线段的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=
1
3
x
的图象与反比例函数y=
k
x
的图象交于A、B两点,点A的横坐标为6.
(1)求反比例函数的表达式;
(2)点P为此反比例函数图象上一点,且点P的纵坐标为4,求△AOP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正比例函数y=kx(k≠0)的图象与反比例函数y=
m
x
(m≠0)
的图象交于A、B两点,作AC⊥Ox轴于C,△AOC的面积是24,且cos∠AOC=
4
5
,点N的坐标是(-5,0),求:
(1)反比例函数与正比例函数的解析式;
(2)求△ANB的面积;
(3)根据图象,直接写出关于x的不等式kx>
m
x
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,正比例函数的图象经过点P和点Q(-m,m+3),求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,正比例函数数学公式与二次函数y=-x2+2x+c的图象都经过点A(2,m).
(1)求这个二次函数的解析式;
(2)求这个二次函数图象顶点P的坐标和对称轴;
(3)若二次函数图象的对称轴与正比例函数的图象相交于点B,与x轴相交于点C,点Q是x轴的正半轴上的一点,如果△OBC与△OAQ相似,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年上海市金山区中考数学一模试卷(解析版) 题型:解答题

如图,正比例函数与二次函数y=-x2+2x+c的图象都经过点A(2,m).
(1)求这个二次函数的解析式;
(2)求这个二次函数图象顶点P的坐标和对称轴;
(3)若二次函数图象的对称轴与正比例函数的图象相交于点B,与x轴相交于点C,点Q是x轴的正半轴上的一点,如果△OBC与△OAQ相似,求点Q的坐标.

查看答案和解析>>

同步练习册答案