精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,点H在⊙O上,E是 的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.

(1)求证:CE是⊙O的切线;
(2)若FB=2,tan∠CAE= ,求OF的长.

【答案】
(1)

证明:连接OE,

∵点E为弧HB的中点,

∴∠1=∠2,

∵OE=OA,

∴∠3=∠2,

∴∠3=∠1,

∴OE∥AC,

∵AC⊥CE,

∴OE⊥CE,

∵点E在⊙O上,

∴CE是⊙O的切线


(2)

解:连接EB,

∵AB是⊙O的直径,

∴∠AEB=90°,

∵EF⊥AB于点F,

∴∠AFE=∠EFB=90°,

∴∠2+∠AEF=∠4+∠AEF=90°,

∴∠2=∠4=∠1.

∵tan∠CAE=

∴tan∠4=

在Rt△EFB中,∠EFB=90°,FB=2,tan∠4=

∴EF=

在Rt△AEF中,tan∠2= ,EF=2

∴AF=4,

∴AB=AF+EF=6,

∴OB=3,

∴OF=OB﹣BF=1.


【解析】(1)连接OE,由于点E为弧HB的中点,根据圆周角定理可知∠1=∠2,而OA=OE,那么∠3=∠2,于是∠1=∠3,根据平行线的判定可知OE∥AC,而AC⊥CE,根据平行线的性质易知∠OEC=90°,即OE⊥CE,根据切线的判定可知CE是⊙O的切线;(2)由于AB是直径,那么∠AEB=90°,而EF⊥AB,易知∠1=∠2=∠4,那么tan∠1=tan∠2=tan∠4= ,在Rt△EFB中,利用正切可求EF,同理在Rt△AEF中,也可求AF,那么直径AB=6,从而可知半径OB=3,进而可求OF.
【考点精析】认真审题,首先需要了解平行线的判定与性质(由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:在RtABC中∠C=90°,CDAB边上的高. 求证:Rt△ADCRtCDB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题:
为祝贺北京成功获得2022年冬奥会主办权,某工艺品厂准备生产纪念北京申办冬奥会成功的“纪念章”和“冬奥印”.生产一枚“纪念章”需要用甲种原料4盒,乙种原料3盒;生产一枚“冬奥印”需要用甲种原料5 盒,乙种原料10 盒.该厂购进甲、乙两种原料分别为20000盒和30000盒,如果将所购进原料正好全部都用完,那么能生产“纪念章”和“冬奥印”各多少枚?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数 与反比例函数 的图象在第一象限的交点为A(1,n).

(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: ﹣( ﹣1)0+( 2﹣4sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2﹣2x﹣3,当x=4时,f(4)=42﹣2×4﹣3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2﹣2x﹣3的图象如图1所示.

观察可知:f(﹣2)>0,f(1)<0,则f(﹣2).f(1)<0.所以函数f(x)=x2﹣2x﹣3在﹣2≤x≤1范围内有零点.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零点,﹣1也是方程x2﹣2x﹣3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是
(2)已知函数y2=f(x)=﹣ 的零点为x1 , x2 , 且x1<1<x2
①求零点为x1 , x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1 , x2 , 点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若平面直角坐标系中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.

(1)若动点P从坐标点M(1,1)出发,按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,则点N的坐标为 , 点G的坐标为
(2)若动点P从坐标原点出发,先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到点O.当△OBC∽△MNG(在(1)中的三角形).且相似比为2:1时,请你直接写出“平移量”m , n , q
(3)在(1)、(2)的前提下,请你在平面直角坐标系中画出△OBC与△MNG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC、AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题做法全校学生中进行了抽样调查,根据调查结果绘制城如图所示的两个不完整的统计图,请结合图中信息解决下列问题:

(1)本次调查所得数据的众数是部,中位数是部,扇形统计图中“1部”所在扇形的圆心角为度.
(2)请将条形统计图补充完整;
(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,则他们选中同一名著的概率为

查看答案和解析>>

同步练习册答案