精英家教网 > 初中数学 > 题目详情

【题目】计算: ﹣( ﹣1)0+( 2﹣4sin45°.

【答案】解:原式=2 ﹣1+4﹣2 =3
【解析】根据零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【考点精析】本题主要考查了零指数幂法则和整数指数幂的运算性质的相关知识点,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(amn=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,锐角△ABC中,BECD是高,它们相交于O , 则图中与△BOD相似的三角形有(  )
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.点P为直线AB上一个动点(点P不与点A,B重合),连接PC,点D在直线BC上,且PD=PC.过点P作PE^PC,点D,E在直线AC的同侧,且PE=PC,连接BE.
(1)情况一:当点P在线段AB上时,图形如图1 所示;
情况二:如图2,当点P在BA的延长线上,且AP<AB时,请依题意补全图2;.

(2)请从问题(1)的两种情况中,任选一种情况,完成下列问题:
①求证:∠ACP=∠DPB;
②用等式表示线段BC,BP,BE之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,∠A=30°,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连结BD,DE. 则∠BDE的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好地贯彻落实国家关于“强化体育课和课外锻炼,促进青少年身心健康、体魄强健”的精神,某校大力开展体育活动.该校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:

(1)求该班学生人数;
(2)请你补全条形图;
(3)求跳绳人数所占扇形圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点H在⊙O上,E是 的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.

(1)求证:CE是⊙O的切线;
(2)若FB=2,tan∠CAE= ,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在反比例函数y= (x>0)的图象上,有点P1 , P2 , P3 , P4…Pn(n为正整数,且n≥1).它们的横坐标依次为1,2,3,4…n(n为正整数,且n≥1),分别过这些点作x轴与y轴的垂线,连接相邻两点,图中所构成的阴影部分的面积从左到右依次为S1 , S2 , S3…Sn1(n为正整数,且n≥2),那么S2+S3+S4+…S7=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小华在研究函数y1=x与y2=2x图象关系时发现:如图所示,当x=1时,y1=1,y2=2;当x=2时,y1=2,y2=4;…;当x=a时,y1=a,y2=2a.他得出如果将函数y1=x图象上各点的横坐标不变,纵坐标变为原来的2倍,就可以得到函数y2=2x的图象.类比小华的研究方法,解决下列问题:
(1)如果函数y=3x图象上各点横坐标不变,纵坐标变为原来的3倍,得到的函数图象的表达式为
(2)①将函数y=x2图象上各点的横坐标不变,纵坐标变为原来的倍,得到函数y=4x2的图象; ②将函数y=x2图象上各点的纵坐标不变,横坐标变为原来的2倍,得到图象的函数表达式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,既是中心对称图又是轴对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案