精英家教网 > 初中数学 > 题目详情

【题目】小华在研究函数y1=x与y2=2x图象关系时发现:如图所示,当x=1时,y1=1,y2=2;当x=2时,y1=2,y2=4;…;当x=a时,y1=a,y2=2a.他得出如果将函数y1=x图象上各点的横坐标不变,纵坐标变为原来的2倍,就可以得到函数y2=2x的图象.类比小华的研究方法,解决下列问题:
(1)如果函数y=3x图象上各点横坐标不变,纵坐标变为原来的3倍,得到的函数图象的表达式为
(2)①将函数y=x2图象上各点的横坐标不变,纵坐标变为原来的倍,得到函数y=4x2的图象; ②将函数y=x2图象上各点的纵坐标不变,横坐标变为原来的2倍,得到图象的函数表达式为

【答案】
(1)y=9x
(2)4;y= x2
【解析】解:(1)设变换后直线解析式为y1=kx, ∵当x=1时,y=3x=3,
∴y1=3×3=9,即k=9,
∴得到的函数图象的表达式为y=9x,
所以答案是:y=9x;
2)①当x=1时,y=x2=1,y=4x2=4,
∴纵坐标变为原来的4倍,得到函数y=4x2的图象,
所以答案是:4;
②设所得函数图象的解析式为y2=ax2
由题意知当x=1时,y=x2=1,
则x=2时,y2=1,即1=4a,解得:a=
即得到图象的函数表达式为y= x2
所以答案是:y= x2
【考点精析】通过灵活运用二次函数图象的平移,掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知OC平分∠AOB.请按要求画图并解答:

(1)在OC上任取一点D,画点DOA、OB的垂线段DE、DF,垂足分别为点E、F,求证:OE=OF;

(2)过点DOB的平行线交OA于点G,求证:△ODG为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: ﹣( ﹣1)0+( 2﹣4sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若平面直角坐标系中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.

(1)若动点P从坐标点M(1,1)出发,按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,则点N的坐标为 , 点G的坐标为
(2)若动点P从坐标原点出发,先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到点O.当△OBC∽△MNG(在(1)中的三角形).且相似比为2:1时,请你直接写出“平移量”m , n , q
(3)在(1)、(2)的前提下,请你在平面直角坐标系中画出△OBC与△MNG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC、AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,对角线ACBD相交于点O , 且AC=6cm,BD=8cm,动点PQ分别从点BD同时出发,运动速度均为1cm/s,点P沿BCD运动,到点D停止,点Q沿DOB运动,到点O停止1s后继续运动,到点B停止,连接APAQPQ . 设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).
(1)填空:AB=cm,ABCD之间的距离为cm;
(2)当4≤x≤10时,求yx之间的函数解析式;
(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣ x﹣ 与x轴交于点A,与y轴交于点C,抛物线y=ax2 x+c(a≠0)经过A,B,C三点.

(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;
(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;
(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图1,求证:AE=BD;
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.

查看答案和解析>>

同步练习册答案