精英家教网 > 初中数学 > 题目详情
10.(1)计算:$\sqrt{\frac{4}{9}}$-$\sqrt{(-2)^{4}}$+$\root{3}{\frac{8}{27}}$-(-1)2017
(2)求满足条件(x-2)2=9的x值.

分析 (1)本题涉及二次根式化简、开立方和乘方.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
(2)两边直接开平方可得x-2=±3,再解一元一次方程即可.

解答 解:(1)原式=$\frac{2}{3}$-4+$\frac{2}{3}$+1=$\frac{7}{3}$-4=$\frac{7}{3}$-$\frac{12}{3}$=-$\frac{5}{3}$;

(2)开平方得:x-2=±3,
x-2=3,x-2=-3,
解得:x1=5,x2=-1.

点评 此题主要考查了实数的运算,以及一元二次方程的解法,关键是掌握二次根式化简、开立方和乘方运算,掌握实数的运算顺序.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知在一个十二边形中,其中十一个内角和是1680°,求这个十二边形另一个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)分解因式:3x3-12x2y+12xy2
(2)计算:($\sqrt{6}$-$\sqrt{60}$)×$\sqrt{3}$-$\sqrt{\frac{1}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.|2$\sqrt{2}$-3|-(-$\frac{1}{2}$)-2+$\sqrt{18}$+($\sqrt{2}$-$\sqrt{3}$)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程:3x-6(x-1)=3-2(x+3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知CD⊥AB于D,E是射线AC上一动点,EF⊥AB于F,EF交直线BC于G,若∠AEF=∠CGE.
(1)求证:CD平分∠ACB,下面给出了部分证明过程和理由,请你补充完善:
证明:∵CD⊥AB,EF⊥AB(已知)
∴∠ADC=∠AFE=90°(垂直的定义)
∴CD∥FG(同位角相等,两直线平行)
∴∠ACD=∠AEF(两直线平行,同位角相等)
∠BCD=∠CGE(两直线平行,内错角相等)
∵∠AEF=∠CGE(已知)
∴∠ACD=∠BCD即CD平分∠ACB(角平分线的定义)
(2)将EF向右平移,使点E在AC的延长线上,(1)中的结论是否还成立?若成立,请画出图形;若不成立,请画出图形,写出正确结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.问题提出
(1)如图①,已知△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA′B′,连接BB′.则BB′=3$\sqrt{2}$;
问题探究
(2)如图②,已知△ABC是边长为4$\sqrt{3}$的等边三角形,以BC为边向外作等边△BCD,P为△ABC内一点,将线段CP绕点C逆时针旋转60°,点P的对应点为点Q.
①求证:△DCQ≌△BCP;
②求PA+PB+PC的最小值;
问题解决
(3)如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A,D为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含B,C两点)开一个货物入口M,并修建三条专用车道PA,PD,PM.若修建每米专用车道的费用为10000元,当M,P建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy中,直线l1:y=mx(m≠0)与直线l2:y=ax+b(a≠0)相交于点A(2,4),直线l2与x轴交于点B(6,0).
(1)分别求直线l1和l2的表达式;
(2)过动点P(0,n)且垂直于y轴的直线与l1,l2的交点分别为C,D,当点C
位于点D左方时,请直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.将图1中五边形纸片ABCDE的A点以BE为折线往下折,A点恰好落在CD上,如图2所示,再分别以图2的AB,AE为折线,将C,D两点往上折,使得A、B、C、D、E五点均在同一平面上,如图3所示,若图1中∠A=124°,则图3中∠CAD的度数为何(  )
A.56B.60C.62D.68

查看答案和解析>>

同步练习册答案