分析 (1)根据CD⊥AB,EF⊥AB,即可得到CD∥FG,根据平行线的性质,即可得到∠ACD=∠AEF,∠BCD=∠CGE,再根据∠AEF=∠CGE,即可得出∠ACD=∠BCD,进而得到CD平分∠ACB;
(2)根据使点E在AC的延长线上,EF⊥AB于F,EF交直线BC于G,即可画出图形.
解答 解:(1)∵CD⊥AB,EF⊥AB(已知)
∴∠ADC=∠AFE=90°(垂直的定义)
∴CD∥FG(同位角相等,两直线平行)
∴∠ACD=∠AEF(两直线平行,同位角相等)
∠BCD=∠CGE(两直线平行,内错角相等)
∵∠AEF=∠CGE(已知)
∴∠ACD=∠BCD,即CD平分∠ACB(角平分线的定义)
故答案为:垂直的定义;FG,同位角相等,两直线平行;∠AEF;∠CGE,两直线平行,同位角相等;角平分线的定义;
(2)成立.如图所示:![]()
理由:∵CD⊥AB,EF⊥AB(已知)
∴∠ADC=∠AFE=90°(垂直的定义)
∴CD∥FG(同位角相等,两直线平行)
∴∠ACD=∠AEF(两直线平行,同位角相等)
∠BCD=∠CGE(两直线平行,内错角相等)
∵∠AEF=∠CGE(已知)
∴∠ACD=∠BCD,即CD平分∠ACB(角平分线的定义)
点评 本题主要考查了平行线的性质与判定的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 年龄 | 13 | 14 | 15 | 16 | 17 |
| 人数 | 2 | 1 | 4 | 1 | 2 |
| 年龄 | 3 | 4 | 5 | 6 | 54 | 57 |
| 人数 | 1 | 2 | 2 | 3 | 1 | 1 |
| 平均数 | 中位数 | 众数 | 方差 | |
| 甲队游客年龄 | 15 | 15 | 15 | 1.8 |
| 乙队游客年龄 | 15 | 5.5 | 6 | 11.4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com