精英家教网 > 初中数学 > 题目详情

如图,已知矩形ABCD,E为AD上一点,F为CD上一点,若将矩形沿BE折叠,点A恰与点F重合,且△DEF为等腰三角形,DE=1,求矩形ABCD的面积.

解:∵四边形ABCD是矩形,
∴∠A=∠D=∠C=90°,AD=BC,
根据折叠的性质可得:AE=FE,∠EFB=∠A=90°,
∵△DEF为等腰三角形,
∴∠DEF=∠DFE=45°,
∵DE=1,
∴DF=1,EF=
∴AE=EF=
∴AD=AE+DE=+1,
∴BC=+1,
∵∠EFD+∠BFC=90°,
∴∠BFC=45°,
∴∠FBC=45°,
∴∠BFC=∠FBC,
∴FC=BC=+1,
∴CD=DF+FC=1++1=+2,
∴矩形ABCD的面积为:CD•AB=(+2)(+1)=4+3
分析:由四边形ABCD是矩形,即可得∠A=∠D=∠C=90°,AD=BC,又由叠的性质可得:AE=FE,∠EFB=∠A=90°,由△DEF为等腰三角形,DE=1,即可求得AD的长易证得△BCF为等腰三角形,即可求得CD的长,继而求得矩形ABCD的面积.
点评:此题考查了折叠的性质,矩形的性质,等腰直角三角形的性质以及勾股定理等知识.此题难度适中,解题的关键是注意数形结合思想的应用,注意掌握折叠中的对应关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形DEFG内接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,则矩形的边长DG=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD中,AB=12cm,BC=6cm,点M沿AB方向从A向B以2cm/秒的速度移动,点N从D沿DA方向以1c精英家教网m/秒的速度移动,如果M、N两点同时出发,移动的时间为x秒(0≤x≤6).
(1)当x为何值时,△MAN为等腰直角三角形?
(2)当x为何值时,有△MAN∽△ABC?
(3)爱动脑筋的小红同学在完成了以上联系后,对该问题作了深入的研究,她认为:在M、N的移动过程中(N不与D、A重合,M不与A、B重合),以A、M、C、N为顶点的四边形面积是一个常数.她的这种想法对吗?请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正三角形ABC的边长AB是480毫米.一质点D从点B出发,沿BA方向,以每秒钟10毫米的速度向精英家教网点A运动.
(1)建立合适的直角坐标系,用运动时间t(秒)表示点D的坐标;
(2)过点D在三角形ABC的内部作一个矩形DEFG,其中EF在BC边上,G在AC边上.在图中找出点D,使矩形DEFG是正方形(要求所表达的方式能体现出找点D的过程);
(3)过点D、B、C作平行四边形,当t为何值时,由点C、B、D、F组成的平行四边形的面积等于三角形ADC的面积,并求此时点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宁德质检)如图,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜边AC平均分成n段,以每段为对角线作边与AB、BC平行的小矩形,则这些小矩形的面积和是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD中AB:BC=3:1,点A、B在x轴上,直线y=mx+n(0<m<n<
1
2
),过点A、C交y轴于点E,S△AOE=
9
8
S矩形ABCD,抛物线y=ax2+bx+c过点A、B,且顶点G在直线y=mx+n上,抛物线与y轴交于点F.
(1)点A的坐标为
(-3n,0)
(-3n,0)
;B的坐标
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步练习册答案