精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,已知抛物线 经过(2,1)和(6,-5)两点.

(1)求抛物线的解析式;
(2)设此抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于C点,点P是在直线右侧的此抛物线上一点,过点PPM轴,垂足为M. 若以APM为顶点的三角形与△OCB相似,求点P的坐标;
(3)点E是直线BC上的一点,点F是平面内的一点,若要使以点OBEF为顶点的四边形是菱形,请直接写出点F的坐标.
(1)抛物线的解析式为
(2)点P的坐标为(8,-14)或(5,-2)
(3)点F的坐标为(,)或(,)或(,)或(2,1)

试题分析:(1)由题意,得 
解这个方程组,得    ∴ 抛物线的解析式为.
(2)令,得.解这个方程,得.∴A(1,0),B(4,0),令,得.∴C(0,-2),设P),因为,①当时,△OCB∽△MAP.∴,解这个方程,得(舍),∴点P的坐标为(8,-14)②当时,△OCB∽△MPA.∴,解这个方程,得(舍).∴点P的坐标为(5,-2),∴点P的坐标为(8,-14)或(5,-2)
(3)先由确定点E的几个位置,再由E点确定F点的位置,推出点F的坐标为(,)或(,)或(,)或(2,1)
点评:本题难度一般,学生可以通过方程组的简单计算,求出函数解析式
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点 A的坐标为(1,0),OB=OC,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;
(3)在(1)的条件下,对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,}=.若关于x的函数y = min{}的图象关于直线对称,试讨论其与动直线交点的个数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过点().
(1)求的值;
(2)若此抛物线的顶点为(),用含的式子分别表示,并求之间的函数关系式;
(3)若一次函数,且对于任意的实数,都有,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分) 如图,已知抛物线y = ax2-x + c经过点Q(-2,),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B两点。

(1)求抛物线的解析式及顶点P的坐标;
(2)求A、B两点的坐标;并求当x为何值时,y>0?
(3)设PB交y轴于C点,求线段PC的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线y=ax2+bx+c如图所示,则下列结论中,正确的是(   )
A.a>0B.a-b+c>0
C.b2-4ac<0D.2a+b=0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某小区广场要设计一个矩形花坛,花坛的长、宽分别为30 m、20 m,花坛中有一横一纵的两条通道,余下部分种植花卉.横纵通道的宽度均为x m.

(1)求两条通道的总面积S与x的函数关系式,不要求写出自变量x的取值范围;
(2)当种植花卉面为551米2时,求横、纵通道的宽度为多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为(    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是二次函数y=ax2+bx+c (a¹0)在平面直角坐标系中的图象,根据图形判断 ①>0;②++<0;③2-<0;④2+8a>4ac中,正确的是(填写序号)     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数的图象与x轴有且只有一个交点,写出a所有可能的值____.

查看答案和解析>>

同步练习册答案