精英家教网 > 初中数学 > 题目详情
已知抛物线经过点().
(1)求的值;
(2)若此抛物线的顶点为(),用含的式子分别表示,并求之间的函数关系式;
(3)若一次函数,且对于任意的实数,都有,直接写出的取值范围.
(1)n-m= (2)q=-p2+p+ (3)- ≤m≤ 且m≠0

试题分析(1) ∵点(-1,3m+)经过抛物线,∴代入解析式得出n-m的值(2)将点(p,q)代入解析式。解:(1)∵抛物线经过点(),
.
.  ............................................................. 1分
(2)∵
, ............................................................. 2分
. .......................................................... 3分

.
.  ........................................................ 5分
(3)的取值范围为. .................................... 7分
阅卷说明:只写或只写得1分.
点评:本题(1)问较简单,将坐标点代入即可求之。(2)问由(1)知m n 的关系,将点(p,q)代入就能得到解析式 (3)构建不等式,由y1 y2的解析式得到,注意解不等式时的性质。本题属于中难题。计算量较大,易出错。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

小明从如图所示的二次函数的图象中,观察得出了下面五条信息:

;②;③
;⑤
你认为其中正确的是( )
A.①②④B.①③⑤C.②③⑤D.①③④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=x2向左平移1个单位,再向下平移2个单位,得到抛物线的解析式为
A.y=x2-2x-1B.y=-x2+2x-1
C.y=x2+2x-1D.y=-x2+4x+1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知抛物线 经过(2,1)和(6,-5)两点.

(1)求抛物线的解析式;
(2)设此抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于C点,点P是在直线右侧的此抛物线上一点,过点PPM轴,垂足为M. 若以APM为顶点的三角形与△OCB相似,求点P的坐标;
(3)点E是直线BC上的一点,点F是平面内的一点,若要使以点OBEF为顶点的四边形是菱形,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分)
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.

(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以PQBC为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线经过点,则的大小关系是_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y=+3向右平移2个单位后,得到的新抛物线解析式是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题10分)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

(1)直接写出点A、B的坐标:A(         )、B(          );
(2)若抛物线y=-x2+bx+c经过点A、B,请求出这条抛物线的解析式;
(3)当≤x≤7,在抛物线上存在点P,使△ABP的面积最大,那么△ABP最大面积是                                 .(请直接写出结论,不需要写过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)如图,抛物线轴交于点,与轴交于,B两点(点A在点B的右侧),过C作直线,与抛物线相交于点,与对称轴交于点N,点为直线上的一个动点,过P作轴的垂线交抛物线于点G,设线段PG的长度为

(1)求该抛物线的函数解析式
(2)当0<<5时,请用含的代数式表示,求出的最大值
(3)是否存在这样的点P,使以M,N,P,G为顶点的四边形是平行四边形,若存在,请求出点P的坐标;若存在,请说明理由。

查看答案和解析>>

同步练习册答案