分析 (1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD-S△BOD,即可求得答案.
解答
(1)证明:连接OD,
∵BC是⊙O的切线,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵点D在⊙O上,
∴CD为⊙O的切线;
(2)解:过点O作OF⊥BD于点F,
在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF=$\sqrt{3}$,
∵OF⊥BD,
∴BD=2BF=2$\sqrt{3}$,∠BOD=2∠BOF=120°,
∴S阴影=S扇形OBD-S△BOD=$\frac{120π×{2}^{2}}{360}$-$\frac{1}{2}$×2$\sqrt{3}$×1=$\frac{4}{3}$π-$\sqrt{3}$.
点评 此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
科目:初中数学 来源: 题型:选择题
| A. | 900元 | B. | 1000元 | C. | 960元 | D. | 920元 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (3-a,-b) | B. | (b,3-a) | C. | (a-3,-b) | D. | (b+3,a) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com