精英家教网 > 初中数学 > 题目详情
(11·佛山)依次连接菱形的各边中点,得到的四边形是(              )
A.矩形B.菱形C.正方形D.梯形
A
分析:先连接AC、BD,由于E、H是AB、AD中点,利用三角形中位线定理可知EH∥BD,同理易得FG∥BD,那么有EH∥FG,同理也有EF∥HG,易证四边形EFGH是平行四边形,而四边形ABCD是菱形,利用其性质有AC⊥BD,就有∠AOB=90°,再利用
EF∥AC以及EH∥BD,两次利用平行线的性质可得∠HEF=∠BME=90°,即可得证.
解答:解:如右图所示

,四边形ABCD是菱形,顺次连接个边中点E、F、G、H,连接AC、BD,
∵E、H是AB、AD中点,
∴EH∥BD,
同理有FG∥BD,
∴EH∥FG,
同理EF∥HG,
∴四边形EFGH是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOB=90°,
又∵EF∥AC,
∴∠BME=90,
∵EH∥BD,
∴∠HEF=∠BME=90°,
∴四边形EFGH是矩形.
故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本小题满分8分)如图,O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?证明你的结论。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(11·十堰)如图等腰梯形ABCD中,AD//BC,AB//DE,BC=8,AB=6,AD=5,则△CDE的周长是          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•广州)已知?ABCD的周长为32,AB=4,则BC=(  )
A.4B.12
C.24D.28

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分8分)已知矩形ABCD的对角线相交于点O,M 、N分别是OD、OC上异于O、C、D的点。
(1)请你在下列条件①DM=CN,②OM=ON,③MN是△OCD的中位线,④MN∥AB中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM为等腰梯形,你添加的条件是               
(2)添加条件后,请证明四边形ABNM是等腰梯形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011内蒙古赤峰,25,14分)如图(图1、图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,FN⊥BC,交BC的延长线于点N。
(1)若点E是BC的中点(如图1),AE与EF相等吗?为什么?
(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y。
①求y与x的函数关系式;
②当x取何值时,y有最大值,并求出这个最大值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

.如图(1),在直角△ABC中, ∠ACB=90,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=nEA(m,n为实数).
试探究线段EF与EG的数量关系.

(1)如图(2),当m=1,n=1时,EF与EG的数量关系是                  
证明:
(2) 如图(3),当m=1,n为任意实数时,EF与EG的数量关系是                  
证明
(3)如图(1),当m,n均为任意实数时,EF与EG的数量关系是                  
(写出关系式,不必证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011?德州)如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一等腰梯形两组对边中点连线段的平方和为8,则这个等腰梯形的对角长为_  ▲  

查看答案和解析>>

同步练习册答案