精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点,AB=10厘米,则MD的长为________厘米.

5
分析:取AB中点N,连接DN,MN.根据直角三角形的性质、等腰三角形的性质证明∠NDB=∠B,根据三角形的中位线定理和平行线的性质证明∠NMB=∠C,结合三角形的外角的性质和已知条件可得∠DNM=∠C=∠NMD,从而发现DM=DN.
解答:解:取AB中点N,连接DN,MN.
在Rt△ADB中,N是斜边AB上的中点,
∴DN=AB=BN.
∴∠NDB=∠B.
在△ABC中,M,N分别是BC,AB的中点.
∴MN∥AC,
∴∠NMB=∠C.
又∠NDB是△NDM的外角,
∴∠NDB=∠NMD+∠DNM.
即∠B=∠NMD+∠DNM=∠C+∠DNM.
又∠B=2∠C,
∴∠DNM=∠C=∠NMD.
∴DM=DN.
又AB=10(厘米),
∴DM=5(厘米).
故答案为5.
点评:此题综合运用了直角三角形的性质、等腰三角形的性质、三角形的中位线定理、平行线的性质和三角形的外角的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案