精英家教网 > 初中数学 > 题目详情
如图,C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD为(  )
分析:由已知条件知AB=DA+DB,AC=BC=
1
2
AB,故CD=AD-AC可求.
解答:解:∵线段DA=6,线段DB=4,
∴AB=10,
∵C为线段AB的中点,
∴AC=BC=5,
∴CD=AD-AC=1.
故选A.
点评:本题考查了两点间的距离.利用中点性质转化线段之间的长短关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.
(1)写出图中两对相似三角形;
(2)连接FG,如果α=45°,AB=4
2
,AF=3,求FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,C为线段AB的中点,AD∥EC,AD=EC,求证:CD=EB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,C为线段AB的中点,D为线段AC上一点,AC=4,BD=5,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,M为线段AB的中点,N为线段MB上一点,且MN=
23
AM
,若MN=2,则线段AB的长度为
6
6

查看答案和解析>>

同步练习册答案