精英家教网 > 初中数学 > 题目详情

如图,在△ABC和△PQD中,AC = k BCDP = k DQ,∠C =∠PDQDE分别是ABAC的中点,点P在直线BC上,连结EQPC于点H

猜想线段EHAC的数量关系,并证明你的猜想.

结论:EH=AC.证明:如图,取BC边中点F,连接DE、DF.

∵D、E、F分别是边AB、AC、BC的中点.

DEBCDE=BC

 DF∥AC且DF=AC,

 EC=AC ∴四边形DFCE是平行四边形.

∴∠EDF=∠C. 

∵∠C=∠PDQ,∴∠PDQ =∠EDF , ∴∠PDF=∠QDE.

又∵AC=kBC,∴DF=kDE.

∵DP=kDQ ,∴

∴△PDF∽△QDE.

∴∠DEQ=∠DFP.

又∵DE∥BC,DF∥AC, ∴∠DEQ=∠EHC,∠DFP=∠C.

∴∠C =∠EHC.∴EH=EC.

∴EH=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知,如图,在△ABC和△EDB中,∠ACB=∠EBD=90°,点E在BC上,DE⊥AB交AB于F,且AB=ED.求证:DB=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=mAC(m>1).试探索线段EF与AB的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”证明△ABC≌△ABD,则需要加条件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB边上的中点.则DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,请说明AE=BD的理由.

查看答案和解析>>

同步练习册答案