精英家教网 > 初中数学 > 题目详情
(2009•泉州质检)已知一次函数y=-x+m中,当x=0时,y=6.
(1)请直接写出m的值;
(2)设该一次函数的图象分别交x轴、y轴于点A、B若点Q的坐标为(0,4),QE⊥AB于E.
①试求QE的长;
②以Q为圆心,QE为半径作⊙Q,试问在x轴的负半轴上是否存在点P,使得⊙P与⊙Q、直线AB都相切?若存在,请求出圆心P的坐标;若不存在,请说明理由.
【答案】分析:(1)将x=0代入解析式即可求得m的值;
(2)①连接AQ,将问题转化为三角形的面积问题解答;
②根据切线的性质,构造出直角三角形BEQ和直角三角形APF,然后利用勾股定理解答.
解答:解:(1)6;(3分)

(2)①如图1,∵OB=6,OQ=4,∴QB=2.
中,令y=0,得x=8,即OA=8.
在Rt△AOB中,由勾股定理,
得:.                                               (2分)
连接AQ,∵
∴10•QE=2×8,解得QE=1.6.                                            (2分)
②若⊙P与⊙Q内切且与直线AB相切.
如图2,由①延长线段EQ交x轴的负半轴于点P,以P为圆心,
PE为半径作⊙P,则⊙P既与⊙Q内切,又与直线AB相切.
在Rt△BQE中,由勾股定理得:.                     (1分)
∵∠BEQ=∠POQ=90°,又∠BQE=∠PQO,
∴△QEB∽△QOP.                                                         (1分)
,解得:OP=3.
∴点P的坐标为(-3,0).                                                  (1分)
若⊙P与⊙Q外切且与直线AB相切,设切点分别为C、F.
连接PF、PQ,则点C在PQ上.

如图3,设P(x,0)(x<0),则AP=8-x
∵∠AFP=∠AOB=90°,又∠FAP=∠OAB,
∴△AFP∽△AOB.
,即,(1分)
∴PC=PF=4.8-0.6x,
PQ=PC+CQ=4.8-0.6x+1.6=6.4-0.6x.
在Rt△POQ中,由勾股定理,得:PQ2=OP2=OQ2
∴(6.4-0.6x)2=x2+42(1分)
整理得:x2+12x-39=0,
解得:(不含题意,舍去),
综上,存在符合条件的两个点P,坐标分别为(-3,0)或(-6-5,0).        (1分)
点评:本题考查了一次函数和圆的相关知识,并具有一定的开放性,题目涉及勾股定理,函数图象与坐标系的关系以及相似三角形的性质,内容繁多,结构复杂,是一道难题.
练习册系列答案
相关习题

科目:初中数学 来源:2009年福建省泉州市初中学业质量检查数学试卷(解析版) 题型:解答题

(2009•泉州质检)已知O为坐标原点,点A(6,n)在反比例函数的图象上.
(1)求点A的坐标;
(2)过点A作AB⊥x轴于B,试求△OAB外接圆的面积.

查看答案和解析>>

科目:初中数学 来源:2009年福建省泉州市初中学业质量检查数学试卷(解析版) 题型:填空题

(2009•泉州质检)已知抛物线y=x2+5x+c与y轴的正半轴相交于一点,请写出符合上述条件的c的一个值:   

查看答案和解析>>

科目:初中数学 来源:2009年福建省泉州市初中学业质量检查数学试卷(解析版) 题型:选择题

(2009•泉州质检)如图,PA、PB分别切⊙O于点A、B,M是劣弧AB上的一个动点(点A、B除外),过M作⊙O的切线分别交PA、PB于点C、D.设CM的长为x,△PCD的周长为y,在下列图象中,大致表示y与x之间的函数关系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2009年福建省泉州市初中学业质量检查数学试卷(解析版) 题型:解答题

(2009•泉州质检)计算:|-4|-4-2009

查看答案和解析>>

同步练习册答案