精英家教网 > 初中数学 > 题目详情
在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为9、12、16,则原直角三角形纸片的斜边长是(  )
分析:先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.
解答:解:①如图:

因为CD=
92+122
=15,
点D是斜边AB的中点,
所以AB=2CD=30,

②如图:

因为CE=
122+162
=20,
点E是斜边AB的中点,
所以AB=2CE=40,
故原直角三角形纸片的斜边长是30或40.
故选C.
点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•安徽)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区一模)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的面积是
16或24
16或24

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图1所示的直角梯形,其中三边长分别为5、9、12,则原直角三角形纸片的斜边长是
26或30
26或30

(2)如图2,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4,②S2+S4=S1+S3,③若S3=2S1,则S4=2S2,④若S1=S2,则P点在矩形的对角线上,其中正确的结论的序号是
②④
②④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点B与点A重合,折痕为DE,则CD长为(  )

查看答案和解析>>

同步练习册答案