精英家教网 > 初中数学 > 题目详情
4.计算:($\frac{1}{2}$)-2=4.

分析 根据负整数指数幂与正整数指数幂互为倒数,可得答案.

解答 解:($\frac{1}{2}$)-2=$\frac{1}{(\frac{1}{2})^{2}}$=$\frac{1}{\frac{1}{4}}$=4,
故答案为:4.

点评 本题考查了负整数指数幂,利用了负整数指数幂与正整数指数幂互为倒数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.因式分解:
(1)a3(x+y)-ab2(x+y)         
(2)(x2+y22-4x2y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52          ②
=39975
(1)例题求解过程中,第②步变形是利用平方差公式(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2xa-3a2=(x2+2xa+a2)-a2-3a2
=(x+a)2-4a2
=(x+a)2-(2a)2
=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程组    
(1)$\left\{\begin{array}{l}{y=2x-3}\\{3x+2y=8}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-y=5}\\{3x-2y=0}\end{array}\right.$
(3)$\left\{\begin{array}{l}{6x+4y=3}\\{3y-5x=7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.-(4×1042

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:(x-1)(2x+1)-2(x-5)(x+2),其中x=$\frac{1}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解下列方程组
(1)$\left\{\begin{array}{l}y=2x-3\\ 3x+2y=8\end{array}$                         
(2)$\left\{\begin{array}{l}{x+4y=14}\\{\frac{x-3}{4}-\frac{y-3}{3}=\frac{1}{12}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,有一个无盖的正方体纸盒,它的下底面标有字母“M”,若沿图中的粗线将其剪开展成平面图形,这个平面图形是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.化简:($\frac{\sqrt{{x}^{3}}-\sqrt{{a}^{3}}}{\sqrt{x}-\sqrt{a}}$+$\sqrt{ax}$)($\frac{\sqrt{x}-\sqrt{a}}{x-a}$)2

查看答案和解析>>

同步练习册答案