分析 过D作DF⊥x轴于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=4,设OE=x,那么CE=8-x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=8,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.
解答 解:如图,过D作DF⊥x轴于F,
∵点B的坐标为(4,8),
∴AO=4,AB=8,
根据折叠可知:CD=OA,
而∠D=∠AOE=90°,∠DEC=∠AEO,
∴△CDE≌△AOE,
∴OE=DE,OA=CD=4,
设OE=x,那么CE=8-x,DE=x,
∴在Rt△DCE中,CE2=DE2+CD2,![]()
∴(8-x)2=x2+42,
∴x=3,
又DF⊥AF,
∴DF∥EO,
∴△AEO∽△ADF,
而AD=AB=8,
∴AE=CE=8-3=5,
∴$\frac{AE}{AD}$=$\frac{EO}{DF}$=$\frac{AO}{AF}$,
即$\frac{5}{8}=\frac{3}{DF}=\frac{4}{AF}$,
∴DF=$\frac{24}{5}$,AF=$\frac{32}{5}$,
∴OF=$\frac{32}{5}$-4=$\frac{12}{5}$,
∴D的坐标为(-$\frac{12}{5}$,$\frac{24}{5}$).
故答案是:(-$\frac{12}{5}$,$\frac{24}{5}$).
点评 此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com