精英家教网 > 初中数学 > 题目详情
已知:如图AB是半圆0的直径,点C在半圆上,CD⊥AB,垂足为D,切线PC交BA的延长线于点P,AD,DB的长是关于x的方程x2-(4m+2)+4m2=0(m>0)的两根,且AD:DB=1:4,求:PO、PC的长.

【答案】分析:先设AD=x,则BD=4x,由于AD:BD=1:4,可知方程x2-(4m+2)+4m2=0(m>0)有两个不相等的实数根,再根据根与系数的关系可得x+4x=4m+2,x•4x=4m2,由于m>0,可得x=m,把x=m代入x+4x=4m+2,可求x=2,进而可知AD=2,BD=8,那么AB=10,则圆半径是5,再根据垂径定理可求CD=4,进而可求OD、AD,根据勾股定理可得PC2=(PA+2)2+16①,再根据切割线定理可得PC2=PA2+10PA②,①②联合,可求PA=,PC=,进而可求PO.
解答:解:设AD=x,则BD=4x,
∵AD:BD=1:4,
∴方程x2-(4m+2)+4m2=0(m>0)有两个不相等的实数根,
∴x+4x=4m+2,x•4x=4m2
∵m>0,
∴x=m,
∴5m=4m+2,
解得m=2,
∴AD=x=2,BD=4x=8,
∴AB=10,
∴OA=OB=OC=5,
连接OC、AC、BC,如右图,
∵AB是直径,
∴∠ACB=90°,
又∵CD⊥AB,
∴CD2=AD•BD,
∴CD=4,
∴OD==3,
∴AD=2,
在Rt△PCD中,PC2=PD2+CD2
即PC2=(PA+2)2+16①,
∵PC是⊙O切线,PB是割线,
∴PC2=PA(PA+AB),
即PC2=PA2+10PA②,
①②联合解得PA=,PC=
∴PO=PA+OA=
点评:本题考查的是圆的综合题,解题的关键是根据根与系数的关系先求出AD、BD,再求出CD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图AB是半圆O的直径,点C、D在AB上,且AD平分∠CAB,已知AB=10,AC=6,则AD=(  )
A、8
B、10
C、2
10
D、4
5

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图AB是半圆0的直径,点C在半圆上,CD⊥AB,垂足为D,切线PC交BA的延长线于点P,AD,DB的长是关于x的方程x2-(4m+2)+4m2=0(m>0)的两根,且AD:DB=1:4,求:PO、PC的长.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:选择题

(1998•温州)如图AB是半圆O的直径,点C、D在AB上,且AD平分∠CAB,已知AB=10,AC=6,则AD=( )

A.8
B.10
C.
D.

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《三角形》(01)(解析版) 题型:选择题

(1998•温州)如图AB是半圆O的直径,点C、D在AB上,且AD平分∠CAB,已知AB=10,AC=6,则AD=( )

A.8
B.10
C.
D.

查看答案和解析>>

同步练习册答案