精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D、E分别在线段BC、AC上运动,并保持∠ADE=45°
(1)当△ADE是等腰三角形时,求AE的长;
(2)当数学公式时,求DE的长.

解:(1)①当AE=AD时,△ADE是等腰三角形,
此时,点E、D分别与点C、B重合,
∴AE=AC=2;
②当AE=DE时,△ADE是等腰三角形,
此时,∠EAD=∠ADE=45°,由题设知,此时点D、E分别为BC、AC的中点,
∴AE=AC=1;
③当AD=DE时,△ADE是等腰三角形,
此时由题设知∠B=∠C=45°,
∵AB=AC=2,BC=
而∠BAD+∠B=∠ADC=45°+∠CDE,
∴∠BAD=∠CDE,而∠B=∠C,AD=DE,
∴△ABD≌△DCE,
∴DC=AB=2,CE=BD=BC-DC=
∴AE=AC-CE=

(2)取BC的中点M,连接AM,
易求得AM=,BM=,∠AMB=90°,
∵BD=
∴DM=BM-BD=-=
DC=BC-BD=2-=
∴在Rt△AMD中,AD==
由(1)的第三种情况已证∠BAD=∠CDE,而∠B=∠C,
∴△ABD∽△DCE,

∴DE=×AD=××=
分析:(1)分三种情况,讨论解答:①当AE=AD时,②当AE=DE时,③当AD=DE时;①②易求得,③通过证明△ABD≌△DCE,得AB=DC,BD=CE,即可求出;
(2)如图,通过证明△ABD∽△DCE,可得到,即DE=×AD,在Rt△AMD中,可通过勾股定理,求得DC的长,即可解答出;
点评:本题主要考查了全等三角形的判定与性质、相似三角形的判定与性质和等腰三角形的性质,本题根据题意,确定动点D、E的位置,是解答的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案