精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC中,∠ACB=90°,AC边上的垂直平分线交AC于D,交AB于E,延长DE到F,使BF=CE
(1)四边形BCEF是平行四边形吗?说说你的理由.
(2)当∠A等于多少时,四边形BCEF是菱形,并说出你的理由.
(3)四边形BCEF可以是正方形吗?为什么?
分析:(1)四边形BCEF是平行四边形,要证明四边形BCEF是平行四边形可转化为证明FB=CE,FB∥CE即可;
(2)当∠A=30°时,四边形BCEF是菱形,由(1)可知四边形BCEF为平行四边形,只要证明邻边相等即可即证明BC=CE;
(3)不可以,因为∠BCE始终是锐角,所以四边形BCEF不可能是正方形.
解答:(1)四边形BCEF是平行四边形,理由如下:
证明:∵DF垂直且平分AC且∠ACB=90°
∴FD∥BC,AE=CE,
∴∠A=∠ACE,
∵∠A+∠ABC=∠ACE+∠BCE=90°,
∴∠ABC=∠BCE,
∴BE=CE=BF,
∴∠BFE=∠BEF
∵FD∥BC,
∴∠BFE=∠BEF=∠ABC=∠BCE
∴∠FBE=∠BEC,
∴FB∥EC,
∵CE=BF,
∴四边形BCEF为平行四边形;

(2)∠A=30°,
证明:∵∠A=30°,
∴∠ABC=60°且BE=CE,
∴△BCE为等边三角形,
∴BC=CE,
由(1)可知四边形BCEF为平行四边形,
∴四边形BCEF为菱形;

(3)不可以,
因为∠BCE始终是锐角,所以四边形BCEF不可能是正方形.
点评:本题考查了平行四边形的判定和性质、菱形的判定和性质以及等边三角形的判定和性质、正方形的判定,解题的关键是掌握各种特殊几何图形的判定方法和各种性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案