【题目】如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE分别长acm.bcm,满足(a-3)2+|2a+b-9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D,设运动时间为t s.
(1)a=______cm,b=______cm;
(2)t为何值时,EP把四边形BCDE的周长平分?
(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2.
【答案】(1)3,3;(2)t=2s;(3)t=s或s或5s.
【解析】
(1)根据非负数的性质即可求出a,b的值;
(2)计算出四边形BCDE的周长,根据ED+DC=7<9判断出点P在BC上,从而得到BP的值,进而根据点P的速度求出时间即可;
(3)分别对点P和点Q的位置进行分类讨论,①当0<t≤3,②当3<t≤,③当<t≤5,表达出△BPQ的面积,列出方程即可解答.
解:(1)∵(a-3)2+|2a+b-9|=0,
∴a-3=0,2a+b-9,
解得:a=3,b=3,
故答案为:3,3.
(2)C四边形BCDE=BC+CD+DE+EB=18cm
若EP把四边形BCDE的周长平分,
∵ED+DC=7<9,
∴点P在BC上,
则BE+BP=9cm,
BP=4cm,
∴t==2s,
∴当t为2s时,EP把四边形BCDE的周长平分.
(3)∵BC=6,ED=3,DC=4,
∴当点P与点Q相遇时,2t+t=6+3+4,解得:t=s,
当t=3时,点P到达点C,点Q到达点D,
当t=5时,点P到达点D,两点运动停止,
①当0<t≤3,点P在BC上,此时点Q在线段ED上,如图1,
则,
解得:t=s,
②当3<t≤,相遇前,此时点P,点Q均在CD上,如图2,
则PC=2t-6,CQ=3+4-t,
∴PQ=3+4-t-(2t-6)
解得:t=s,
③当<t≤5,相遇后,点P,点Q均在CD上,如图3,
则PQ=PC-CQ=2t-6-(7-t)=3t-13,
∴
解得:t=5s
∴综上,t=s或s或5s.
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少。
小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树。他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约_______千米。
然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米。小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:
考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在任意四边形ABCD中,M,N,P,Q分别是AB,BC,CD,DA上的点,对于四边形MNPQ的形状,以下结论中,错误的是
A. 当M,N,P,Q是各边中点,四边MNPQ一定为平行四边形
B. 当M,N,P,Q是各边中点,且时,四边形MNPQ为正方形
C. 当M,N、P,Q是各边中点,且时,四边形MNPQ为菱形
D. 当M,N、P、Q是各边中点,且时,四边形MNPQ为矩形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.
(1)请在图中画出平移后的△A′B′C′,
(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC在整个平移过程中线段AC扫过的面积为________.
(3)能使S△MBC=S△ABC的格点M共有_______个(点M异于点A)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).
(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;
(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.
(1)当t为何值时,四边形PODB是平行四边形?
(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;
(3)△OPD为等腰三角形时,写出点P的坐标(不必写过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的推理过程,在括号内填上推理的依据,如图:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:
①若∠A=70°,则∠ABE=35°;②若点F是CD的中点,则S△ABES菱形ABCD
下列判断正确的是( )
A. ①,②都对B. ①,②都错C. ①对,②错D. ①错,②对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】真假命题的思考.
一天,老师在黑板上写下了下列三个命题:
①垂直于同一条直线的两条直线平行;
②若,则
③若和的两边所在直线分别平行,则.
小明和小丽对话如下,
小明:“命题①是真命题,好像可以证明.”
小丽:“命题①是假命题,好像少了一些条件.”
(1)结合小明和小丽的对话,谈谈你的观点.如果你认为是真命题,请证明:如果你认为是假命题,请增加一个适当的条件,使之成真命题.
(2)请在命题②、命题③中选一个,如果你认为它是真命题,请证明:如果你认为它是假命题,请举出反例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com