精英家教网 > 初中数学 > 题目详情

【题目】如图,在长方形ABCD中,AB4cmBE5cm,点EAD边上的一点,AEDE分别长acmbcm,满足(a3)2|2ab9|0.动点PB点出发,以2cm/s的速度沿B→C→D运动,最终到达点D,设运动时间为t s

1a______cmb______cm

2t为何值时,EP把四边形BCDE的周长平分?

3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若PQ两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ的面积等于6cm2

【答案】133;(2t2s;(3tss5s

【解析】

1)根据非负数的性质即可求出ab的值;

2)计算出四边形BCDE的周长,根据ED+DC=79判断出点PBC上,从而得到BP的值,进而根据点P的速度求出时间即可;

3)分别对点P和点Q的位置进行分类讨论,0t≤33t≤t≤5,表达出△BPQ的面积,列出方程即可解答.

解:(1)∵(a3)2|2ab9|0

a3=02ab9

解得:a=3b=3

故答案为:33

2C四边形BCDEBCCDDEEB18cm

EP把四边形BCDE的周长平分,

ED+DC=79

∴点PBC上,

BE+BP=9cm

BP4cm

t2s

∴当t2s时,EP把四边形BCDE的周长平分.

3)∵BC=6ED=3DC=4

∴当点P与点Q相遇时,2t+t=6+3+4,解得:t=s

t=3时,点P到达点C,点Q到达点D

t=5时,点P到达点D,两点运动停止,

0t≤3,点PBC上,此时点Q在线段ED上,如图1

解得:ts

3t≤,相遇前,此时点P,点Q均在CD上,如图2

PC=2t-6CQ=3+4-t

PQ=3+4-t-(2t-6)

解得:ts

t≤5,相遇后,点P,点Q均在CD上,如图3

PQ=PC-CQ=2t-6-(7-t)=3t-13

解得:t5s

综上,tss5s

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂。”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少。

小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树。他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约_______千米。

然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米。小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:

考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在任意四边形ABCD中,MNPQ分别是ABBCCDDA上的点,对于四边形MNPQ的形状,以下结论中,错误的是  

A. MNPQ是各边中点,四边MNPQ一定为平行四边形

B. MNPQ是各边中点,且时,四边形MNPQ为正方形

C. MNPQ是各边中点,且时,四边形MNPQ为菱形

D. MNPQ是各边中点,且时,四边形MNPQ为矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.

1)请在图中画出平移后的△A′B′C′

2)再在图中画出△A′B′C′的高C′D′,并求出△ABC在整个平移过程中线段AC扫过的面积为________

3)能使SMBC=SABC的格点M共有_______个(点M异于点A

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).

(1)试作出△ABCC为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;

(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.

(1)当t为何值时,四边形PODB是平行四边形?

(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;

(3)OPD为等腰三角形时,写出点P的坐标(不必写过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的推理过程,在括号内填上推理的依据,如图:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABE沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EFBF,给出下列结论:

①若∠A=70°,则∠ABE=35°;②若点FCD的中点,则SABES菱形ABCD

下列判断正确的是(  )

A. ①,②都对B. ①,②都错C. ①对,②错D. ①错,②对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】真假命题的思考.

一天,老师在黑板上写下了下列三个命题:

①垂直于同一条直线的两条直线平行;

②若,则

③若的两边所在直线分别平行,则.

小明和小丽对话如下,

小明:“命题①是真命题,好像可以证明.”

小丽:“命题①是假命题,好像少了一些条件.”

1)结合小明和小丽的对话,谈谈你的观点.如果你认为是真命题,请证明:如果你认为是假命题,请增加一个适当的条件,使之成真命题.

2)请在命题②、命题③中选一个,如果你认为它是真命题,请证明:如果你认为它是假命题,请举出反例.

查看答案和解析>>

同步练习册答案