精英家教网 > 初中数学 > 题目详情
4.如图,已知EF∥AB,∠1=∠B,求证:∠EDC=∠DCB.

分析 证明∠EDC=∠DCB,只需具备DE∥BC即可,可以考虑证得∠ADE=∠B,而∠1与这两个角都相等.

解答 解:∵EF∥AB,
∴∠1=∠ADE,
∵∠1=∠B,
∴∠ADE=∠B,
∴DE∥BC,
∴∠EDC=∠DCB.

点评 本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.已知3x=8,3y=2,则3x+y的值是(  )
A.4B.6C.10D.16

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.
(1)求证:AD=EC;
(2)当点D是BC的中点时,求证:四边形ADCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.矩形具有而一般的平行四边形不一定具有的特征(  )
A.对角相等B.对角线互相平分C.对角线相等D.对边相等

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在 Rt△ABC中,∠ACB=90°,BC=6,AC=8,AB的垂直平分线 DE交 BC的延长线于F,则 CF的长为$\frac{7}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在平行四边形ABCD中,点E是BC边的中点,延长AE交DC的延长线于点F,连接AC、BF.
(1)如图1,求证:四边形ABFC是平行四边形;
(2)如图2,连接DE交AC于点G,若DE⊥AF,∠ADE=30°,判断四边形ABFC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)$\sqrt{0.04}$+$\root{3}{-27}$+$\sqrt{(-2)^{2}}$
(2)$\sqrt{2}$-|$\sqrt{2}$-2|.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,一圆柱高4m,底面周长为6m,现需按如图方式缠绕一圈彩带进行装饰,则彩带最短要用10m.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,将一个圆分割成甲、乙、丙三个扇形,使它们的圆心角的度数之比为2:3:4.若圆的半径为3,则扇形丙的面积为(  )
A.$\frac{2}{3}$πB.$\frac{4}{9}$πC.D.

查看答案和解析>>

同步练习册答案