精英家教网 > 初中数学 > 题目详情
4.如图,在矩形ABCD中,AB=$\sqrt{3}$,BC=3,将△ABC沿对角线AC折叠,点B恰好落在点P处,CP与AD交于点F,连接BP交AC于点G,交AD于点E,下列结论错误的是(  )
A.AC=2APB.△PBC是等边三角形
C.S△BGC=3S△AGPD.$\frac{PG}{CG}$=$\frac{1}{3}$

分析 如图,首先运用勾股定理求出AC的长度,进而求出∠ACB=30°,此为解决该题的关键性结论;运用翻折变换的性质证明△BCP为等边三角形;运用射影定理求出线段CG、AG之间的数量关系,进而证明选项A、B、C成立,选项D不成立.

解答 解:如图,∵四边形ABCD为矩形,
∴∠ABC=90°;由勾股定理得:
AC2=AB2+BC2,而AB=$\sqrt{3}$,BC=3,
∴AC=2$\sqrt{3}$,AB=$\frac{1}{2}$AC,
∴∠ACB=30°;由翻折变换的性质得:
BP⊥AC,∠ACB=∠ACP=30°,
BC=PC,AB=AP,BG=PG,
∴GC=$\sqrt{3}$BG=$\sqrt{3}$PG,∠BCP=60°,AC=2AP,
∴△BCP为等边三角形,
故选项A、B成立,选项D不成立;
由射影定理得:BG2=CG•AG,
∴AG=$\frac{\sqrt{3}}{3}$BG,CG=3AG,
∴S△BCG=3S△ABG;由题意得:
S△ABG=S△AGP
∴S△BGC=3S△AGP
故选项C正确;
故答案为D.

点评 该题主要考查了翻折变换的性质、矩形的性质、射影定理、三角形的面积公式等几何知识点及其应用问题;
解题的关键是灵活运用矩形的性质、射影定理等几何知识点来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-$\frac{1}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,
(1)△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C内用同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第一个内接正方形的边长是1,第n个小正方形AnBnDnEn 的边长是$\frac{1}{{3}^{(n-1)}}$.
(2)在△ABC中,BC=12,高AD=8,四边形PQMN为△ABC的内接矩形,(P在AB上,Q在AC上,M、N在BC上),
①求当PQ为何值时,矩形PQMN面积最大.
②若再在△APQ中作一个内接矩形P2Q2M2N2,如此下去,操作n次,求PnQn的长.(直接写出结果)
(3)解完上述两题,根据其中一题你还能归纳出怎样的数学结论,请简单的写出一条.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.关于x的二次函数y=2sinαx2-(4sinα+$\frac{1}{2}$)x-sinα+$\frac{1}{2}$,其中a为锐角,则:
①当a等于30°时,函数有最小值-$\frac{25}{16}$;
②当a不等于30°时,函数图象与坐标轴一定有三个交点;
③当a<60°时,函数在x>1时,y随x的增大而增大;
④无论锐角a怎么变化,函数图象必过定点.
其中正确的结论有(  )
A.①③B.①②③C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,在长为6厘米,宽为3厘米的矩形PQMN中,有两张边长分别为2厘米和1厘米的正方形纸片ABCD和EFGH,且BC在PQ上,EF在PN上,PB=1厘米,PF=$\frac{1}{2}$厘米.从初始时刻开始,纸片ABCD沿PQ以2厘米/秒的速度向右平移,同时纸片EFGH沿PN以1厘米/秒的速度向上平移,当C点与Q点重合时,两张纸片同时停止移动,设平移时间为t秒时(如图2),纸片ABCD扫过的面积为S1,纸片EFGH扫过的面积为S2,AP、PG、GA所围成的图形面积为S(这里规定线段面积为零,扫过的面积含纸片面积).

解答下列问题:
(1)当t=$\frac{1}{2}$时,PA=PG+GA;(填“>”或“<”或“=”)
(2)求S与t之间的关系式;
(3)当t=$\frac{1}{2}$,且S1+S2=4S+5时,正方形纸片ABCD和EFGH均停止运动,此时有两点R、T分别从点P和点Q出发,沿矩形MNPQ的边逆时针方向运动,点R运动的速度为2厘米/秒,点T运动的速度为1厘米/秒,当点R追上点T时运动停止.若点R运动时间为x秒,当x为何值时,△RTD为等腰三角形?请直接写出x的所有值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若过点P和点A(3,2)的直线平行于x轴,过点P和B(-1,-2)的直线平行于y轴,则点P的坐标为(  )
A.(-1,2 )B.(-2,2)C.(3,-1)D.(3,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知,如图在平面直角坐标系中,S△ABC=30,∠ABC=45°,BC=12,求△ABC三个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.一个盒子中有大小、形状形同的四个球,其中红球1个,白球1个,黑球2个,
(1)用树状图或列表法求任意摸出两个球恰好是黑球的概率;
(2)若先任意摸出1个球,记下颜色后放回盒子,搅匀后在任意摸出1个求记下颜色,两次都摸到黑球的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.分解因式:x2-9+3x(x-3)

查看答案和解析>>

同步练习册答案