精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为a,射线AM是∠A外角的平分线,点E在边AB上运动(不与点AB重合),点F在射线AM上,且AF=√2BECFAD相交于点G,连结ECEFEG

1)求证:CE=EF

2)求△AEG的周长(用含a的代数式表示)

3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大?

【答案】1)见解析;(22a;(3)点边中点时,最大,最大值为

【解析】

(1)过点于点,依据SAS证明,即可求证;

2)先在(1)的基础上继续证明是等腰直角三角;把绕点逆时针旋转位置,即可证明SAS),从而得到,继而得到△AEG的周长

3)设,由(1)得,建立二次函数,即可求出最值.

1)证明:如图,过点于点,则

平分

是等腰直角三角形,

2

中,

由(1)知,

是等腰三角形,

绕点逆时针旋转位置,如图所示.

SAS

3)设,由(1)得

,即点边中点时,最大,最大值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,BDABC外接圆⊙O的直径,且∠BAE=C.

(1)求证:AE与⊙O相切于点A;

(2)若AEBC,BC=2,AC=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人走进一家商店,进门付l角钱,然后在店里购物花掉当时他手中钱的一半,走出商店付1角钱;之后,他走进第二家商店付1角钱,在店里花掉当时他手中钱的一半, 走出商店付1角钱;他又进第三家商店付l角钱,在店里花掉当时他手中钱的一半,出店付1角钱;最后他走进第四家商店付l角钱,在店里花掉当时他手中钱的一半, 出店付1角钱,这时他一分钱也没有了.该人原有钱的数目是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),在建立的平面直角坐标系中,△ABC绕旋转中心P逆时针旋转90°后得到△A1B1C1

(1)在图中标示出旋转中心P,并写出它的坐标;

(2)以原点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2,在图中画出△A2B2C2,并写出C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,CDAB,垂足为D,EBC上一点,连接AE,作EFAEABF.

(1)求证:AGC∽△EFB.

(2)除(1)中相似三角形,图中还有其它相似三角形吗?如果有,请把它们都写出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边ABCD中,AD=2ABFAD的中点,作CE⊥AB,垂足E在线段AB上,连接EFCF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)

1∠DCF=∠BCD,(2EF=CF;(3SΔBEC=2SΔCEF;(4∠DFE=3∠AEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个边长为a的大正方形和四个边长为b的全等的小正方形(其中a>2b,按如图方式摆放,并顺次连接四个小正方形落入大正方形内部的顶点,得到四边形ABCD.

下面有四种说法:

①阴影部分周长为4a;

②阴影部分面积为(a+2b)(a-2b;

③四边形ABCD周长为8a-4b;

④四边形ABCD的面积为a24ab4b2.

所有合理说法的序号是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在RtABC中,C=90°,BD平分ABC,过D作DEBD交AB于点E,经过B,D,E三点作O

(1)求证:AC与O相切于D点;

(2)若AD=15,AE=9,求O的半径.

查看答案和解析>>

同步练习册答案