精英家教网 > 初中数学 > 题目详情
若抛物线轴的交点为,则下列说法不正确的是(  )
A.抛物线开口向上B.抛物线的对称轴是
C.当时,的最大值为D.抛物线与轴的交点为
C.

试题分析:∵抛物线过点(0,﹣3),
∴抛物线的解析式为:y=x2﹣2x﹣3.
A.抛物线的二次项系数为1>0,抛物线的开口向上,正确;
B.根据抛物线的对称轴x==1,正确;
C.由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为﹣4,而不是最大值.故本选项错误;
D.当y=0时,有x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0).正确.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=ax2+1与双曲线y=的交点A的横坐标是2,则关于x的不等式+ax2+1<0的解集是              

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,抛物线的顶点是点P,对称轴与x轴相交于点Q,以点P为圆心,PQ长为半径画⊙P,那么下列判断正确的是(    )
A.x轴与⊙P相离;B.x轴与⊙P相切;
C.y轴与⊙P与相切;D.y轴与⊙P相交.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A.B.C,求ac的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列关于抛物线y=x2+2x+1的说法中,正确的是(     )
A.开口向下B.对称轴为直线x=1
C.与x轴有两个交点 D.顶点坐标为(-1,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,矩形OABC过原点O,且A(0,2)、C(6,0),∠AOC的平分线交AB于点D.
(1)直接写出点B的坐标;
(2)如图,点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿轴正方向移动.设移动时间为秒.

①当t为何值时,△OPQ的面积等于1;
②当t为何值时,△PQB为直角三角形;
(3)已知过O、P、Q三点的抛物线解析式为y=-(x-t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).

(1)求抛物线的解析式;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当二次函数取最小值时,的值为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,某同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的信息有(         )
A.4个B.3个C.2个D.1个

查看答案和解析>>

同步练习册答案