精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知四边形ABCD的外接圆⊙O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=
2
AE,且BD=2
3
,求四边形ABCD的面积.
分析:先求△ABD的面积,在求证△ABD与△BCD的面积相等,根据四边形ABCD面积为△ABD和△BCD面积之和求解.
解答:精英家教网解:∵AE=EC,AB=
2
AE,
∴AB2=2AE2=AE•AC,
∴AB:AC=AE:AB,
又∠EAB=∠BAC,
∴△ABE∽△ACB,
∴∠ABE=∠ACB,
从而AB=AD.
连接AO,交BD于H,连接OB,
∵AB=AD,
∴AO⊥BD,
∴BH=HD,
BO=2,BH=
3

则BH=HD=
3

∴OH=
OB2-BH2
=
4-3
=1,AH=OA-OH=2-1=1.
∴S△ABD=
1
2
BD•AH=
1
2
×2
3
×1=
3

∵E是AC的中点,∴S△ABE=S△BCE
S△ADE=S△CDE,∴S△ABD=S△BCD
∴S四边形ABCD=2S△ABD=2
3
点评:本题考查了勾股定理的灵活应用,考查了三角形面积计算方法,本题中求证△ABD面积和求证△BCD面积与△ABD面积相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案