【题目】选择适当的方法解下列方程:
(1)7x(3x-4)=9(3x-4);
(2)x2-6x+9=(5-2x)2;
(3)2x2-5x-7=0;
(4)x2-2x-1=0.
【答案】(1)x1=,x2 =;(2)x1=,x2=2;(3)x1= ,x2=-1;(4)x1=+1,x2=-+1.
【解析】
(1)用因式分解法解方程即可.
(2)方程左边配方成完全平方,用直接开方法解方程即可.
(3)用公式法解方程即可.
(4)用配方法解方程即可.
(1)(因式分解法)移项,得7x(3x-4)-9(3x-4)=0,
即(3x-4)(7x-9)=0.
故3x-4=0,或7x-9=0.
所以x1=,x2 =.
(2)(直接开平方法)原方程可变形为(x-3)2=(5-2x)2.
直接开平方,得x-3=±(5-2x).
解得x1=,x2=2.
(3)(公式法)a=2,b=-5,c=-7,b2-4ac=(-5)2-4×2×(-7)=25+56=81,
所以x= .
所以x1= ,x2=-1.
(4)(配方法)移项,得x2-2x=1.
配方,得x2-2x+1=1+1,
即(x-1)2=2.
直接开平方,得x-1=±.
所以方程两根为x1=+1,x2=-+1.
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.则下列结论正确的有( )
A. ①②④ B. ①③④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.
(1)求抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,∠B=30°,AD是角平分线,DE⊥AB于E,AD、CE相交于点H,则图中的等腰三角形有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.
(1)求证:AC·CD=CP·BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是ABCD的对角线,点E、F分别在BD上,连接AE、CF.
(1)请你添加一个条件,使△AED≌△CFB,并给予证明;
(2)在你添加的条件后,不再添加其它条件,写出图中所有全等的三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,则①abc>0,②b2-4ac>0,③2a+b>0,④a+b+c<0,这四个式子中正确的个数有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.
(1)求这条抛物线所对应的函数表达式;
(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;
(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com