精英家教网 > 初中数学 > 题目详情
精英家教网如图,Rt△ABC中,∠ABC=90°,AB=6,BC=8,以斜边AC作正方形ACDE,则边BE的长是(  )
A、15
B、2
58
C、15
2
D、4
13
分析:作EF⊥AB于F.根据正方形的性质和等角的余角相等的性质可以证明△AEF≌△CAB,从而根据勾股定理即可求解.
解答:精英家教网解:作EF⊥AB于F.
∵四边形ACDE是正方形,
∴∠CAE=90°,AC=AE,
∴∠EAF+∠BAC=90°.
又∠ABC=90°,
∴∠BAC+∠ACB=90°.
∴∠EAF=∠ACB.
∴△AEF≌△CAB.
∴AF=BC=8,EF=AB=6.
在直角三角形BEF中,根据勾股定理,得
BE=
BF2+EF2
=
36+196
=
232
=2
58

故选B.
点评:此题综合运用了正方形的性质、等角的余角相等的性质、全等三角形的判定和性质以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案