精英家教网 > 初中数学 > 题目详情
14.青岛国际帆船中心要修建一处公共服务设施,使它到三所运动员公寓A、B、C的距离相等.(不写作法,但要保留作图痕迹)
(1)若三所运动员公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置;
(2)若∠BAC=66°,求∠BPC.

分析 (1)到线段两个端点距离相等的点应在线段的垂直平分线上,所以应作出任意两条线段的垂直平分线;
(2)连接点P和各顶点,以及AC.根据线段的垂直平分线的性质和三角形的内角和定理求解.

解答 解:(1)如图,P点即为所求;


(2)连接点P和各顶点,以及AC.
∵PA=PB,
∴∠PAB=∠PBA,
同理∠PAC=∠PCA,
∵∠BAP+∠PAC=∠BAC=66°,
∴∠PAB+∠PBA+∠PAC+∠PCA=132°,
∵∠BPC+∠PBC+∠PCB=180°,
∴∠PAB+∠PBA+∠PAC+∠PCA+∠PBC+∠PCB=180°,
∴∠BPC=∠PAB+∠PBA+∠PAC+∠PCA=132°.

点评 考查了作图-应用与设计作图,本题用到的知识点为:到线段两个端点距离相等的点应在线段的垂直平分线上;线段的垂直平分线上的点到线段的两个端点的距离相等.等边对等角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图),已知西瓜的重量占这批水果总重量的40%.
回答下列问题:
(1)这批水果总重量为4000kg;
(2)请将条形图补充完整;
(3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为90度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.阅读下面材料:
在数学课上,老师提出如下问题:
尺规作图:
已知:如图1,Rt△ABC,∠C=90°.
求作:Rt△DEF,使∠DFE=90°,DE=AB,FE=CB.
小芸的作图步骤如下:
如图2:
(1)作线段FE=CB;
(2)过点F作GF⊥FE于点F;
(3)以点E为圆心、AB的长为半径作弧,
交射线FG于点D,连接DE,
所以△DEF即为所求作的直角三角形.
老师说:“小芸的作图步骤正确,且可以得到DF=AC”.
请回答:得到DF=AC的依据是斜边、直角边(基本事实),全等三角形对应边相等,或全等三角形对应边相等,勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.进制也就是进位制,是人们利用符号进行计数的科学方法.对于任何一种进制X进制,就表示某一位置上的数运算时逢X进一位,如十进制数123=1×102+2×101+3×100,记作123(10); 七进制123=1×72+2×71+3×70,记作123(7).各进制之间可进行转化,如:将七进制转化为十进制:123(7)=1×72+2×7+3×70=66,即123(7)=66(10),将十进制转化为七进制:(因为72<66<73,所以做除法从72开始)66÷72=1…17,17÷71=2…3,即66(10)=123(7)
(1)根据以上信息,若将八进制转化为十进制:15(8)=1×81+5×80=13,即15(8)=13(10);若将十进制转化为九进制:98÷92=1…17,17÷91=1…8,即98(10)=118(9)
(2)若将一个十进制两位数转换成九进制和八进制数后,得到一个九进制两位数和一个八进制两位数,首位分别2,3,个位分别为x,y.
①若x=7,则y=1.
②请求出满足上述条件的所有十进制两位数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.等边△ABC,P为BC中点,∠MPN=60°,求证:△BPM∽△CNP∽△PNM;MP平分∠BMN;NP平分∠CNM;MN=BM+CN-$\frac{1}{2}$AB;BM•CN=$\frac{1}{4}$AB2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:
(1)FB:FC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在△ABC中,AB,BC,AC三边的长分别$\sqrt{2}$,$\sqrt{13}$,$\sqrt{17}$,求这个三角形的面积.

小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.2.5
思维拓展
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为2$\sqrt{2}$a,$\sqrt{10}$a,$\sqrt{26}$a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
(3)若△ABC三边的长分别为$\sqrt{{m}^{2}+4{n}^{2}}$,$\sqrt{{m}^{2}+16{n}^{2}}$,2$\sqrt{{m}^{2}+{n}^{2}}$(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:
(1)$\root{3}{216}$+$\root{3}{1000}$+$\sqrt{(-\frac{2}{3})^{2}}$;
(2)$\root{3}{\frac{26}{27}-1}$+$\sqrt{(1-\frac{5}{4})^{2}}$;
(3)$\root{3}{-27}$+$\sqrt{(-3)^{2}}$-$\root{3}{-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知,如图,△ABC中,CD是∠ACB的角平分线.
(1)用尺规在CD上求作点P,使PA=PC.(保留作图痕迹,不写作法)
(2)若∠ACB=60°,AC=6,求点P到边BC的距离.

查看答案和解析>>

同步练习册答案