精英家教网 > 初中数学 > 题目详情

【题目】如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里.

(1)尺规作图:过点P作AB所在直线的垂线,垂足为E(要求:保留作图痕迹,不写作法);
(2)求船P到海岸线MN的距离(即PE的长);
(3)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

【答案】
(1)

【解答】解:如图所示:


(2)

由题意得,∠PAE=30°,AP=30海里,

在Rt△APE中,PE=APsin∠PAE=APsin30°=15海里;


(3)

在Rt△PBE中,PE=15海里,∠PBE=53°,

则BP=海里,

A船需要的时间为:=1.5小时,B船需要的时间为:=1.25小时,

∵1.5>1.25,

∴B船先到达.


【解析】(1)利用直角三角板中90°的直角直接过点P作AB所在直线的垂线即可;
(2)解Rt△APE求出PE即可;
(3)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为 米.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则下列描述正确的是(  )

A.四边形ACEF是平行四边形,它的周长是4
B.四边形ACEF是矩形,它的周长是2+2
C.四边形ACEF是平行四边形,它的周长是4
D.四边形ACEF是矩形,它的周长是4+4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+2与坐标轴交于A、B、C三点,其中B(4,0)、C(﹣2,0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D作DE⊥x轴,垂足为E,交AB于点F.

(1)求此抛物线的解析式;
(2)在DE上作点G,使G点与D点关于F点对称,以G为圆心,GD为半径作圆,当⊙G与其中一条坐标轴相切时,求G点的横坐标;
(3)过D点作直线DH∥AC交AB于H,当△DHF的面积最大时,在抛物线和直线AB上分别取M、N两点,并使D、H、M、N四点组成平行四边形,请你直接写出符合要求的M、N两点的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一条直线过点(0,4),且与抛物线y= x2交于A,B两点,其中点A的横坐标是﹣2.

(1)求这条直线的函数关系式及点B的坐标.
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27, ≈1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,经过点A的双曲线y= (x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为 ,∠AOB=∠OBA=45°,则k的值为

查看答案和解析>>

同步练习册答案