Èçͼ1£¬ÒÑ֪˫ÇúÏßy=
k
x
(k£¾0)
ÓëÖ±Ïßy=k¡äx½»ÓÚA£¬BÁ½µã£¬µãAÔÚµÚÒ»ÏóÏÞ£®ÊÔ½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÈôµãAµÄ×ø±êΪ£¨4£¬2£©£¬ÔòµãBµÄ×ø±êΪ
 
£»ÈôµãAµÄºá×ø±êΪm£¬ÔòµãBµÄ×ø±ê¿É±íʾΪ
 
£»
£¨2£©Èçͼ2£¬¹ýÔ­µãO×÷ÁíÒ»ÌõÖ±Ïßl£¬½»Ë«ÇúÏßy=
k
x
(k£¾0)
ÓÚP£¬QÁ½µã£¬µãPÔÚµÚÒ»ÏóÏÞ£®
¢Ù˵Ã÷ËıßÐÎAPBQÒ»¶¨ÊÇƽÐÐËıßÐΣ»
¢ÚÉèµãA£¬PµÄºá×ø±ê·Ö±ðΪm£¬n£¬ËıßÐÎAPBQ¿ÉÄÜÊǾØÐÎÂ𣿿ÉÄÜÊÇÕý·½ÐÎÂð£¿Èô¿ÉÄÜ£¬Ö±½Óд³öm£¬nÓ¦Âú×ãµÄÌõ¼þ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
¾«Ó¢¼Ò½ÌÍø
·ÖÎö£º£¨1£©ÓÉͼÏóÐÔÖÊ¿ÉÖª£¬µãA¡¢B¹ØÓÚ×ø±êÔ­µã¶Ô³Æ£¬ÓÉ´Ë¿ÉÒÔÇó³öA¿ÉÇóB×ø±ê£»
£¨2£©¢Ù¸ù¾Ý¹´¹É¶¨Àí»ò¶Ô³ÆÐÔÒ×ÖªOA=OB£¬OP=OQÒò´ËËıßÐÎAPBQÒ»¶¨ÊÇƽÐÐËıßÐΣ»
¢Ú¸ù¾Ý¾ØÐεÄÐÔÖʺÍÕý·½ÐεÄÐÔÖÊ¿ÉÒÔÍƳöËüÃǵĿÉÄÜÐÔ£®
½â´ð£º½â£º£¨1£©¡ßË«ÇúÏߺÍÖ±Ïßy=k'x¶¼ÊǹØÓÚÔ­µãµÄÖÐÐĶԳÆͼÐΣ¬ËüÃǽ»ÓÚA£¬BÁ½µã£¬
¡àBµÄ×ø±êΪ£¨-4£¬-2£©£¬
£¨-m£¬-k'm£©»ò£¨-m£¬-
k
m
£©£»

£¨2£©¢ÙÓɹ´¹É¶¨ÀíOA=
m2+(k¡äm)2
£¬
OB=
(-m)2+(-k¡äm)2
=
m2+(k¡äm)2
£¬
¡àOA=OB£®
ͬÀí¿ÉµÃOP=OQ£¬
ËùÒÔËıßÐÎAPBQÒ»¶¨ÊÇƽÐÐËıßÐΣ»
¢ÚËıßÐÎAPBQ¿ÉÄÜÊǾØÐΣ¬
´Ëʱm£¬nÓ¦Âú×ãµÄÌõ¼þÊÇmn=k£»
ËıßÐÎAPBQ²»¿ÉÄÜÊÇÕý·½ÐΣ¨1·Ö£©
ÀíÓÉ£ºµãA£¬P²»¿ÉÄÜ´ïµ½×ø±êÖᣬ¼´¡ÏPOA¡Ù90¡ã£®
µãÆÀ£º´ËÌâÄѶÈÖеȣ¬Ëü¿¼²éÁË·´±ÈÀýº¯Êý¡¢Ò»´Îº¯ÊýµÄͼÐκÍÐÔÖÊ£¬¹´¹É¶¨Àí£¬Æ½ÐÐËıßÐεÄÐÔÖÊ£¬¾ØÐκÍÕý·½ÐεÄÐÔÖÊ£¬×ÛºÏÐԱȽÏÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ËÕÖÝÄ£Ä⣩Èçͼ1£¬ÒÑ֪˫ÇúÏßy=
k1
x
£¨k1£¾0£©ÓëÖ±Ïßy=k2x½»ÓÚA¡¢BÁ½µã£¬µãAÔÚµÚÒ»ÏóÏÞ£®ÊÔ½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÈôµãA×ø±êΪ£¨4£¬2£©£¬ÔòBµã×ø±êΪ
£¨-4£¬-2£©
£¨-4£¬-2£©
£®ÈôµãAµÄºá×ø±êΪm£¬ÔòBµã×ø±êΪ
£¨-m£¬-k2m£©»ò£¨-m£¬-
k1
m
£©
£¨-m£¬-k2m£©»ò£¨-m£¬-
k1
m
£©
£¨Óú¬mºÍk1»òk2µÄʽ×Ó±íʾ£©£»
£¨2£©Èçͼ2£¬¹ýÔ­µã×÷ÁíÒ»ÌõÖ±Ïßl£¬½»Ë«ÇúÏßy=
k1
x
£¨k1£¾0£©ÓÚP¡¢QÁ½µã£¬ËµÃ÷ËıßÐÎAPBQÊÇƽÐÐËıßÐΣ»
£¨3£©ÉèµãA¡¢PµÄºá×ø±ê·Ö±ðΪm¡¢n£¬ËıßÐÎAPBQ¿ÉÄÜÊǾØÐÎÂ𣿿ÉÄÜÊÇÕý·½ÐÎÂð£¿Èô¿ÉÄÜ£¬Ö±½Óд³öm¡¢nÓ¦Âú×ãµÄÌõ¼þ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÒÑ֪˫ÇúÏßy1=
k
x
(k£¾0)
ÓëÖ±Ïßy2=k'x½»ÓÚA£¬BÁ½µã£¬µãAÔÚµÚÒ»ÏóÏÞ£®ÊÔ½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÈôµãAµÄ×ø±êΪ£¨4£¬2£©£¬ÔòµãBµÄ×ø±êΪ
 
£»µ±xÂú×㣺
 
ʱ£¬y1£¾y2£»
£¨2£©¹ýÔ­µãO×÷ÁíÒ»ÌõÖ±Ïßl£¬½»Ë«ÇúÏßy=
k
x
(k£¾0)
ÓÚP£¬QÁ½µã£¬µãPÔÚµÚÒ»ÏóÏÞ£¬Èçͼ2Ëùʾ£®
¢ÙËıßÐÎAPBQÒ»¶¨ÊÇ
 
£»
¢ÚÈôµãAµÄ×ø±êΪ£¨3£¬1£©£¬µãPµÄºá×ø±êΪ1£¬ÇóËıßÐÎAPBQµÄÃæ»ý£»
¢ÛÉèµãA¡¢PµÄºá×ø±ê·Ö±ðΪm¡¢n£¬ËıßÐÎAPBQ¿ÉÄÜÊǾØÐÎÂð£¿Èô¿ÉÄÜ£¬Çóm£¬nÓ¦Âú×ãµÄÌõ¼þ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÒÑ֪˫ÇúÏßy=
a
x
(a£¾0)
ÓëÖ±Ïßy=kx½»ÓÚA£¬CÁ½µã£¬µãAÔÚµÚÒ»ÏóÏÞ£®ÊÔ½â´ðÏÂÁÐÎÊÌ⣺

£¨1£©ÈôµãAµÄ×ø±êΪ£¨4£¬2£©£¬ÔòµãCµÄ×ø±êΪ
£¨-4£¬-2£©
£¨-4£¬-2£©
£»ÈôµãAµÄºá×ø±êΪm£¬ÔòµãCµÄ×ø±ê¿É±íʾΪ
£¨-m£¬-km£©»ò£¨-m£¬-
a
m
£©
£¨-m£¬-km£©»ò£¨-m£¬-
a
m
£©
£»
£¨2£©Èçͼ2£¬¹ýÔ­µãO×÷ÁíÒ»ÌõÖ±Ïßl½»Ë«ÇúÏßy=
a
x
ÓÚB£¬DÁ½µã£¬µãBÔÚµÚÒ»ÏóÏÞ£®ÉèµãA£¬BµÄºá×ø±ê·Ö±ðΪm£¬n£®
¢ÙËıßÐÎABCD¿ÉÄÜÊǾØÐÎÂð£¿Èô¿ÉÄÜ£¬Ö±½Óд³öm£¬nÓ¦Âú×ãµÄÌõ¼þ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
¢ÚËıßÐÎABCD¿ÉÄÜÊÇÕý·½ÐÎÂð£¿Èô¿ÉÄÜ£¬Ö±½Óд³öm£¬nÓ¦Âú×ãµÄÌõ¼þ£»Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÒÑ֪˫ÇúÏßy1=
k
x
(k£¾0)
ÓëÖ±Ïßy2=k'x½»ÓÚA£¬BÁ½µã£¬µãAÔÚµÚÒ»ÏóÏÞ£®ÊÔ½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÈôµãAµÄ×ø±êΪ£¨3£¬1£©£¬ÔòµãBµÄ×ø±êΪ
£¨-3£¬-1£©
£¨-3£¬-1£©
£»
£¨2£©µ±xÂú×㣺
-3¡Üx£¼0»òx¡Ý3
-3¡Üx£¼0»òx¡Ý3
ʱ£¬y1¡Üy2£»
£¨3£©¹ýÔ­µãO×÷ÁíÒ»ÌõÖ±Ïßl£¬½»Ë«ÇúÏßy=
k
x
(k£¾0)
ÓÚP£¬QÁ½µã£¬µãPÔÚµÚÒ»ÏóÏÞ£¬Èçͼ2Ëùʾ£®
¢ÙËıßÐÎAPBQÒ»¶¨ÊÇ
ƽÐÐËıßÐÎ
ƽÐÐËıßÐÎ
£»
¢ÚÈôµãAµÄ×ø±êΪ£¨3£¬1£©£¬µãPµÄºá×ø±êΪ1£¬ÇóËıßÐÎAPBQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸